A378935 Array read by antidiagonals: T(m,n) is the number of minimal edge cuts in the rook graph K_m X K_n.
0, 1, 1, 3, 6, 3, 7, 22, 22, 7, 15, 84, 150, 84, 15, 31, 346, 1276, 1276, 346, 31, 63, 1476, 11538, 23214, 11538, 1476, 63, 127, 6322, 102772, 418912, 418912, 102772, 6322, 127, 255, 26844, 890130, 7290534, 14673870, 7290534, 890130, 26844, 255, 511, 112666, 7525876, 123174016, 496484776, 496484776, 123174016, 7525876, 112666, 511
Offset: 1
Examples
Array begins: ====================================================== m\n | 1 2 3 4 5 6 ... ----+------------------------------------------------- 1 | 0 1 3 7 15 31 ... 2 | 1 6 22 84 346 1476 ... 3 | 3 22 150 1276 11538 102772 ... 4 | 7 84 1276 23214 418912 7290534 ... 5 | 15 346 11538 418912 14673870 496484776 ... 6 | 31 1476 102772 7290534 496484776 32893769886 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 antidiagonals)
- Eric Weisstein's World of Mathematics, Minimal Edge Cut.
- Eric Weisstein's World of Mathematics, Rook Graph.
Crossrefs
Programs
-
PARI
\\ Needs G from A360873. T(M,N=M) = {G(M,N) + matrix(M,N,m,n, (2^(m-1) - 1)*(2^(n-1) - 1) - 2^(m*n-1))} { my(A=T(7)); for(n=1, #A~, print(A[n,])) }
Formula
T(m,n) = A360873(m,n) + (2^(m-1) - 1)*(2^(n-1) - 1) - 2^(m*n-1).
T(m,n) = T(n,m).