cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378935 Array read by antidiagonals: T(m,n) is the number of minimal edge cuts in the rook graph K_m X K_n.

Original entry on oeis.org

0, 1, 1, 3, 6, 3, 7, 22, 22, 7, 15, 84, 150, 84, 15, 31, 346, 1276, 1276, 346, 31, 63, 1476, 11538, 23214, 11538, 1476, 63, 127, 6322, 102772, 418912, 418912, 102772, 6322, 127, 255, 26844, 890130, 7290534, 14673870, 7290534, 890130, 26844, 255, 511, 112666, 7525876, 123174016, 496484776, 496484776, 123174016, 7525876, 112666, 511
Offset: 1

Views

Author

Andrew Howroyd, Dec 12 2024

Keywords

Examples

			Array begins:
======================================================
m\n |  1    2      3       4         5           6 ...
----+-------------------------------------------------
  1 |  0    1      3       7        15          31 ...
  2 |  1    6     22      84       346        1476 ...
  3 |  3   22    150    1276     11538      102772 ...
  4 |  7   84   1276   23214    418912     7290534 ...
  5 | 15  346  11538  418912  14673870   496484776 ...
  6 | 31 1476 102772 7290534 496484776 32893769886 ...
  ...
		

Crossrefs

Main diagonal is A378936.
Rows 1..2 are A000225(n-1), A378937.

Programs

  • PARI
    \\ Needs G from A360873.
    T(M,N=M) = {G(M,N) + matrix(M,N,m,n, (2^(m-1) - 1)*(2^(n-1) - 1) - 2^(m*n-1))}
    { my(A=T(7)); for(n=1, #A~, print(A[n,])) }

Formula

T(m,n) = A360873(m,n) + (2^(m-1) - 1)*(2^(n-1) - 1) - 2^(m*n-1).
T(m,n) = T(n,m).