cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378939 Number of Schroeder paths of semilength n up to reversal.

Original entry on oeis.org

1, 2, 5, 15, 54, 216, 947, 4375, 21018, 103550, 520041, 2649391, 13655190, 71053780, 372727751, 1968880111, 10463765490, 55909445082, 300160457453, 1618364548591, 8759315367894, 47574840887024, 259215969470139, 1416461749625543, 7760734001872842, 42624971709868054
Offset: 0

Views

Author

Andrew Howroyd, Dec 19 2024

Keywords

Comments

A Schroeder path of semilength n is a path from (0,0) to (2n,0) using only steps U = (1,1), H = (2,0) and D = (1,-1). This sequence considers a path and its reversal to be the same.

Examples

			The a(1)..a(3) paths are:
a(1) = 1: H, UD;
a(2) = 5: HH, UHD, UDUD, UUDD, HUD=UDH;
a(3) = 15: HHH, HUDH, UHHD, UDHUD, UDUDUD, UUHDD, UUDUDD, UUUDDD, HHUD=UDHH, HUHD=UHDH, HUDUD=UDUDH, UHDUD=UDUHD, HUUDD=UDUDH, UHUDD=UUDHD, UDUUDD=UUDDUD.
		

Crossrefs

Cf. A006318, A110110, A007123 (similar for Dyck paths), A378941 (similar for Motzkin paths).

Programs

  • PARI
    seq(n) = { my(A=O(x^(n+2))); Vec(( -2*x - sqrt(1 - 6*x + x^2 + A) + sqrt(1 - 6*x^2 + x^4 + A)*(1 + x)/(1 - 2*x - x^2) ) / (4*x)) }

Formula

a(n) = (A006318(n) + A110110(n))/2.
G.f.: ( -2*x - sqrt(1 - 6*x + x^2) + sqrt(1 - 6*x^2 + x^4)*(1 + x)/(1 - 2*x - x^2) ) / (4*x).