cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A364765 G.f. A(x) satisfies A(x) = 1 + x*A(x)^4 / (1 - x*A(x)^5).

Original entry on oeis.org

1, 1, 5, 36, 304, 2808, 27475, 279845, 2935987, 31511097, 344344868, 3818320487, 42855633210, 485923475563, 5557803724920, 64046876264292, 742908320701832, 8667090253409215, 101631581618367133, 1197190915359577973, 14160413911721178800
Offset: 0

Views

Author

Seiichi Manyama, Aug 06 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(4*n+k, n-1-k))/n);

Formula

G.f. satisfies A(x) = 1 + x*A(x)^6 / (1 + x*A(x)^4).
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(4*n+k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * binomial(6*n-2*k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} binomial(n,k) * binomial(5*n-k,n-1-2*k) for n > 0. - Seiichi Manyama, Apr 01 2024

A378954 G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^3/(1 + x*A(x)^2) )^2.

Original entry on oeis.org

1, 2, 11, 82, 705, 6584, 64902, 664608, 7001006, 75378082, 825810304, 9176278104, 103171720299, 1171558985630, 13416903518301, 154784357304138, 1797153050309355, 20984321920535966, 246252819129444579, 2902768234099178002, 34355158795966317996, 408086199665333171952
Offset: 0

Views

Author

Seiichi Manyama, Dec 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=-1, t=6, u=4) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies:
(1) A(x) = 1/( 1 - x*A(x)^(5/2)/(1 + x*A(x)^2) )^2.
(2) A(x) = 1 + x * A(x)^2 * (1 + A(x)^(3/2)).
(3) A(x) = B(x)^2 where B(x) is the g.f. of A364765.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).

A378951 G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(5/3)/(1 + x*A(x)) )^3.

Original entry on oeis.org

1, 3, 15, 94, 663, 5025, 39970, 329145, 2782095, 23999078, 210427869, 1869908364, 16802935370, 152425394958, 1393972037301, 12838326815582, 118970843349711, 1108503805898190, 10378559702646846, 97593299922016224, 921294705307189029
Offset: 0

Views

Author

Seiichi Manyama, Dec 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=3, s=-1, t=5, u=3) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies:
(1) A(x) = 1/( 1 - x*A(x)^(4/3)/(1 + x*A(x)) )^3.
(2) A(x) = 1 + x * A(x) * (1 + A(x)^(2/3) + A(x)^(4/3)).
(3) A(x) = B(x)^3 where B(x) is the g.f. of A271469.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).
Showing 1-3 of 3 results.