cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A379107 Dirichlet convolution of A033879 and A378990, where A033879 is the deficiency of n, and A378990 is the Dirichlet inverse of the binary weight of n.

Original entry on oeis.org

1, 0, 0, 0, 2, -2, 3, 0, 3, -2, 7, -4, 9, -2, -2, 0, 14, -4, 15, -4, 1, -2, 18, -8, 12, -2, 4, -4, 24, -10, 25, 0, 2, -2, 7, -8, 33, -2, 0, -8, 37, -12, 38, -4, 2, -2, 41, -16, 29, -8, -2, -4, 48, -14, 13, -8, 0, -2, 53, -20, 55, -2, -1, 0, 20, -20, 63, -4, 3, -16, 66, -16, 69, -2, -6, -4, 24, -24, 73, -16, 24, -2, 78
Offset: 1

Views

Author

Antti Karttunen, Dec 16 2024

Keywords

Crossrefs

Cf. A000120, A033879, A378990, A379106 (Dirichlet inverse).
Cf. also A294898, A378755, A378757.

Programs

Formula

a(n) = Sum_{d|n} A033879(d)*A378990(n/d).

A378989 Dirichlet inverse of the Möbius transform of binary weight of n.

Original entry on oeis.org

1, 0, -1, 0, -1, 0, -2, 0, 1, 0, -2, 0, -2, 0, 1, 0, -1, 0, -2, 0, 5, 0, -3, 0, 0, 0, -3, 0, -3, 0, -4, 0, 6, 0, 5, 0, -2, 0, 4, 0, -2, 0, -3, 0, -1, 0, -4, 0, 4, 0, 1, 0, -3, 0, 3, 0, 4, 0, -4, 0, -4, 0, -11, 0, 6, 0, -2, 0, 8, 0, -3, 0, -2, 0, 2, 0, 9, 0, -4, 0, 6, 0, -3, 0, 1, 0, 6, 0, -3, 0, 8, 0, 9, 0, 2, 0, -2, 0, -12, 0, -3, 0, -4, 0, -12
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2024

Keywords

Crossrefs

Dirichlet inverse of A297115.
Inverse Möbius transform of A378990.
Cf. A000120.

Programs

  • PARI
    A297115(n) = sumdiv(n, d, moebius(n/d)*hammingweight(d));
    memoA378989 = Map();
    A378989(n) = if(1==n,1,my(v); if(mapisdefined(memoA378989,n,&v), v, v = -sumdiv(n,d,if(dA297115(n/d)*A378989(d),0)); mapput(memoA378989,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA297115(n/d) * a(d).
a(n) = Sum_{d|n} A378990(d).

A378991 Dirichlet inverse of the Möbius transform of A005187, where A005187(n) = 2*n - (number of 1's in binary representation of n).

Original entry on oeis.org

1, -2, -3, 0, -7, 8, -10, 0, -3, 20, -18, -4, -22, 28, 27, 0, -31, 6, -34, -12, 35, 52, -41, 0, 10, 64, 11, -16, -53, -104, -56, 0, 66, 92, 91, 4, -70, 100, 84, 0, -78, -132, -81, -32, 21, 120, -88, 0, 16, -66, 123, -40, -101, -56, 173, 0, 132, 156, -112, 124, -116, 164, 51, 0, 210, -256, -130, -60, 156, -364, -137
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2024

Keywords

Crossrefs

Dirichlet inverse of A297111.
Inverse Möbius transform of A346237.
Cf. A005187.
Cf. also A378989, A378990.

Programs

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA297111(n/d) * a(d).
a(n) = Sum_{d|n} A346237(d).
Showing 1-3 of 3 results.