A379002 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j) and A112765(i) = A112765(j), for all i, j, where A046523 gives the least representative of the prime signature of n and A112765 gives the 5-adic valuation of n.
1, 2, 2, 3, 4, 5, 2, 6, 3, 7, 2, 8, 2, 5, 7, 9, 2, 8, 2, 10, 5, 5, 2, 11, 12, 5, 6, 8, 2, 13, 2, 14, 5, 5, 7, 15, 2, 5, 5, 16, 2, 17, 2, 8, 10, 5, 2, 18, 3, 19, 5, 8, 2, 11, 7, 11, 5, 5, 2, 20, 2, 5, 8, 21, 7, 17, 2, 8, 5, 13, 2, 22, 2, 5, 19, 8, 5, 17, 2, 23, 9, 5, 2, 24, 7, 5, 5, 11, 2, 20, 5, 8, 5, 5, 7, 25, 2, 8, 8, 26, 2, 17, 2, 11, 13
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000
Programs
-
PARI
up_to = 100000; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; v379002 = rgs_transform(vector(up_to, n, [A046523(n), valuation(n,5)])); A379002(n) = v379002[n];
Comments