cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379010 Square array A(n, k) = phi(A246278(n, k)), read by falling antidiagonals; Euler totient function applied to the prime shift array.

Original entry on oeis.org

1, 2, 2, 2, 6, 4, 4, 8, 20, 6, 4, 18, 24, 42, 10, 4, 12, 100, 60, 110, 12, 6, 24, 40, 294, 120, 156, 16, 8, 20, 120, 72, 1210, 192, 272, 18, 6, 54, 48, 420, 160, 2028, 288, 342, 22, 8, 40, 500, 96, 1320, 216, 4624, 396, 506, 28, 10, 36, 168, 2058, 180, 2496, 352, 6498, 616, 812, 30, 8, 24, 200, 660, 13310, 264, 4896, 504, 11638, 840, 930, 36
Offset: 1

Views

Author

Antti Karttunen, Dec 14 2024

Keywords

Comments

Each column is strictly increasing.

Examples

			The top left corner of the array:
k=  |  1     2     3      4     5      6     7        8      9     10
2k= |  2     4     6      8    10     12    14       16     18     20
----+-------------------------------------------------------------------
1   |  1,    2,    2,     4,    4,     4,    6,       8,     6,     8,
2   |  2,    6,    8,    18,   12,    24,   20,      54,    40,    36,
3   |  4,   20,   24,   100,   40,   120,   48,     500,   168,   200,
4   |  6,   42,   60,   294,   72,   420,   96,    2058,   660,   504,
5   | 10,  110,  120,  1210,  160,  1320,  180,   13310,  1560,  1760,
6   | 12,  156,  192,  2028,  216,  2496,  264,   26364,  3264,  2808,
7   | 16,  272,  288,  4624,  352,  4896,  448,   78608,  5472,  5984,
8   | 18,  342,  396,  6498,  504,  7524,  540,  123462,  9108,  9576,
9   | 22,  506,  616, 11638,  660, 14168,  792,  267674, 17864, 15180,
10  | 28,  812,  840, 23548, 1008, 24360, 1120,  682892, 26040, 29232,
11  | 30,  930, 1080, 28830, 1200, 33480, 1260,  893730, 39960, 37200,
12  | 36, 1332, 1440, 49284, 1512, 53280, 1656, 1823508, 59040, 55944,
		

Crossrefs

Cf. A062570 (row 1), A006093 (column 1), A036689 (column 2), A083553 (column 3), A135177 (column 4).

Programs

  • PARI
    up_to = 11325; \\ = binomial(150+1,2)
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A379010sq(row,col) = eulerphi(A246278sq(row,col));
    A379010list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A379010sq(col,(a-(col-1))))); (v); };
    v379010 = A379010list(up_to);
    A379010(n) = v379010[n];