A379019 Positive integers k such that the simplest cubic field defined by x^3 - k*x^2 - (k+3)*x - 1 is not monogenic.
21, 30, 41, 48, 57, 75, 84, 90, 100, 102, 103, 111, 129, 138, 139, 152, 154, 156, 165, 183, 188, 192, 201, 204, 210, 219, 235, 237, 246, 250, 264, 269, 271, 273, 291, 299, 300, 318, 327, 335, 345, 348, 354, 356, 372, 374, 381, 384, 398, 399, 404, 408, 426, 433, 435, 438, 446, 453, 462, 480
Offset: 1
Keywords
Links
- D. Gil-Muñoz and M. Tinková, Additive structure of non-monogenic simplest cubic fields, arXiv:2212.00364 [math.NT], 2022.
- T. Kashio and R. Sekigawa, The characterization of cyclic cubic fields with power integral bases, Kodai Math. J. 44 (2021), no. 2, 290-306.
- D. Shanks, The simplest cubic fields, Math. Comp., 28 (1974), 1137-1152.
Crossrefs
Cf. A005472.
Programs
-
Magma
is_A379019 := function(k) R
:= PolynomialRing(Integers()); K := NumberField(x^3 - k*x^2 - (k+3)*x - 1); return #IndexFormEquation(MaximalOrder(K), 1) eq 0; end function; [k : k in [1..1000] | is_A379019(k)];
Comments