A379027 Irregular table read by rows in which the n-th row lists the modified exponential divisors of n.
1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 8, 1, 9, 1, 2, 5, 10, 1, 11, 1, 3, 4, 12, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 16, 1, 17, 1, 2, 9, 18, 1, 19, 1, 4, 5, 20, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 6, 8, 24, 1, 25, 1, 2, 13, 26, 1, 3, 27, 1, 4, 7, 28
Offset: 1
Examples
The table starts: 1; 1, 2; 1, 3; 1, 4; 1, 5; 1, 2, 3, 6; 1, 7; 1, 2, 8; 1, 9; 1, 2, 5, 10; 1, 11; 1, 3, 4, 12;
Links
- Amiram Eldar, Table of n, a(n) for n = 1..11627 (first 2000 rows)
- Andrew V. Lelechenko, The Quest for the Generalized Perfect Numbers, Theoretical and Applied Aspects of Cybernetics, Proceedings, The 4th International Scientific Conference of Students and Young Scientists, Kyiv, 2014.
- David Moews, Perfect, amicable and sociable numbers.
Crossrefs
Programs
-
Mathematica
modexpDivQ[n_, d_] := Module[{f = FactorInteger[n]}, And @@ MapThread[Divisible, {f[[;; , 2]] + 1, IntegerExponent[d, f[[;; , 1]]] + 1}]]; row[1] = {1}; row[n_] := Select[Divisors[n], modexpDivQ[n, #] &]; Table[row[n], {n, 1, 28}] // Flatten
-
PARI
ismodexpdiv(f, d) = {my(e); for(i=1, #f~, e = valuation(d, f[i, 1]); if((f[i, 2]+1) % (e+1), return(0))); 1; } row(n) = {my(f = factor(n), d = divisors(f), mediv = [1]); if(n == 1, return(mediv)); for(i=2, #d, if(ismodexpdiv(f, d[i]), mediv = concat(mediv, d[i]))); mediv; }
Comments