A379046 Rectangular array read by descending antidiagonals: the Type 1 runlength index array of A000002 (the Kolakoski sequence); see Comments.
1, 2, 3, 4, 5, 12, 6, 9, 17, 32, 7, 14, 39, 66, 93, 8, 19, 52, 125, 134, 257, 10, 23, 57, 154, 318, 351, 378, 11, 27, 71, 194, 512, 639, 702, 471, 13, 29, 84, 216, 553, 1627, 1672, 789, 798, 15, 36, 98, 230, 594, 2141, 2168, 1747, 1960, 825, 16, 41, 111, 309
Offset: 1
Examples
Corner: 1 2 4 6 7 8 10 11 13 15 16 18 3 5 9 14 19 23 27 29 36 41 45 49 12 17 39 52 57 71 84 98 111 116 139 161 32 66 125 154 194 216 230 309 430 462 491 526 93 134 318 512 553 594 943 1004 1330 1371 1594 1826 257 351 639 1627 2141 2490 2612 2869 3501 3761 3990 4191 378 702 1672 2168 2896 3564 3806 4017 4218 4935 5054 5418 471 789 1747 2729 2905 3651 4547 6578 6763 7768 7962 8185 798 1960 2756 2932 3660 4574 6659 6936 8368 9370 10296 12393 825 1987 2783 3415 3687 4601 8455 9433 10359 12426 13180 15836 Starting with s = A000002, we have for U*(s): (row 1) = ((1,1), (2,2), (4,1), (6,2), (7,1), (8,2), (10,1), (11,2), (13,1), ...) c(1) = ((3,2), (5,1), (9,2), (12,2), (14,1), (17,1), (19,2), (23,1), (27,2), ...) (row 2) = ((3,2), (5,1), (9,2), (14,1), (19,2), (23,1), (27,2), (29,1), (36,2), ...) c(2) = ((12,2), (17,1), (32,1), (39,2), (52,1), (57,2), (66,2), (71,1), ...) (row 3) = ((12,2), (17,1), (39,2), (52,1), (57,2), (71,1), ...) so that UI(s) has (row 1) = (1,2,4,6,7,8,10,11,13,...) (row 2) = (3,5,9,14,19,...) (row 3) = (12,17,32,66,...)
Programs
-
Mathematica
r[seq_] := seq[[Flatten[Position[Prepend[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]]; (* Type 1 *) row[0] = Prepend[Nest[Flatten[Partition[#, 2] /. {{2, 2} -> {2, 2, 1, 1}, {2, 1} -> {2, 2, 1}, {1, 2} -> {2, 1, 1}, {1, 1} -> {2, 1}}] &, {2, 2}, 24], 1]; (* A000002 *) row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]]; k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[ SortBy[Apply[Complement, Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]]; m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]]; p[n_] := Take[m[[n]], 12] t = Table[p[n], {n, 1, 12}] Grid[t] (* array *) w[n_, k_] := t[[n]][[k]]; Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *) (* Peter J. C. Moses, Dec 04 2024 *)
Comments