A379401
Rectangular array, read by descending antidiagonals: the Type 1 runlength index array of A039701 (primes mod 3); see Comments.
Original entry on oeis.org
1, 2, 10, 3, 12, 17, 4, 16, 22, 56, 5, 19, 33, 75, 57, 6, 24, 38, 97, 134, 98, 7, 37, 41, 115, 165, 274, 109, 8, 40, 48, 162, 181, 299, 275, 166, 9, 47, 55, 180, 220, 466, 318, 276, 241, 11, 52, 68, 201, 273, 554, 467, 363, 279, 256, 13, 59, 92, 264, 294
Offset: 1
Corner:
1 2 3 4 5 6 7 8 9 11 13 14
10 12 16 19 24 37 40 47 52 59 72 74
17 22 33 38 41 48 55 68 92 101 104 112
56 75 97 115 162 180 201 264 293 328 359 440
57 134 165 181 220 273 294 341 360 451 545 623
98 274 299 466 554 624 661 742 786 836 898 941
109 275 318 467 555 631 704 749 823 839 903 1046
166 276 363 500 600 758 824 856 912 1059 1176 1212
241 279 364 505 601 861 913 1076 1177 1229 1258 1368
256 510 608 866 964 1077 1180 1533 1645 2006 2156 2215
421 521 709 1088 1181 2007 2163 2248 2551 2690 2919 3138
424 522 710 1089 1184 2008 2174 2785 2920 3141 3466 3938
Starting with s = A039701, we have for U*(s):
(row 1) = ((1,1), (2,0), (3,2), (4,2), (5,2), (6,1), (7,2), (8,1), (9,2), ...)
c(1) = ((10,2), (12,1), (16,2), (17,2), (14,1), (17,1), (19,1), (22,1), (24,2), ...)
(row 2) = ((10,2), (12,1), (16,2), (19,1), (24,2), (23,1), (27,2), (29,1), (36,2), ...)
c(2) = ((17,2), (22,1), (33,2), ...)
(row 3) = ((17,2), (22,1), ...)
so that UI(s) has
(row 1) = (1,2,3,4,5,6,7,8,9,11,13, ...)
(row 2) = (10,12,16.19,24, ...)
(row 3) = (17,22,33,...)
-
r[seq_] := seq[[Flatten[Position[Prepend[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]]; (* Type 1 *)
row[0] = Mod[Prime[Range[4000]], 3];(* A039701 *)
row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]];
k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[
SortBy[Apply[Complement, Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]];
m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]];
p[n_] := Take[m[[n]], 12]
t = Table[p[n], {n, 1, 12}]
Grid[t] (* array *)
w[n_, k_] := t[[n]][[k]];
Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *)
(* Peter J. C. Moses, Dec 04 2024 *)
A379402
Rectangular array, read by descending antidiagonals: the Type 2 runlength index array of A039701 (primes mod 3); see Comments.
Original entry on oeis.org
1, 2, 9, 3, 11, 15, 4, 16, 18, 54, 5, 21, 23, 58, 91, 6, 32, 36, 102, 110, 205, 7, 37, 39, 129, 160, 272, 194, 8, 40, 46, 161, 167, 419, 271, 139, 10, 47, 55, 174, 238, 499, 416, 260, 86, 12, 56, 73, 245, 273, 597, 496, 359, 257, 357, 13, 67, 96, 274, 292
Offset: 1
Corner:
1 2 3 4 5 6 7 8 10 12 13 14
9 11 16 21 32 37 40 47 56 67 71 74
15 18 23 36 39 46 55 73 96 99 107 111
54 58 102 129 161 174 245 274 311 326 423 515
91 110 160 167 238 273 292 321 420 508 598 621
205 272 419 499 597 618 703 733 813 835 896 932
194 271 416 496 576 617 702 730 776 834 989 1128
139 260 359 489 699 713 771 831 988 1127 1173 1190
86 257 358 464 698 830 987 1124 1164 1185 1251 1298
357 461 697 829 942 1107 1412 1498 1717 2059 2138 2179
356 438 889 1062 1714 2046 2137 2176 2551 2820 2927 3270
291 437 882 1055 1711 2033 2550 2741 2926 3269 3699 3918
Starting with s = A039701, we have for U*(s):
(row 1) = ((1,1), (2,0), (3,2), (4,2), (5,2), (6,1), (7,2), (8,1), (10,2), ...)
c(1) = ((9,2), (11,1), (15,2), (16,2), (18,1), (21,1), (23,1), (32,2), ...)
(row 2) = ((9,2), (11,1), (16,2), (21,1), (36,1), ...)
c(2) = ((15,2), (37,1), ...)
(row 3) = ((15,2), (18,1), (23,2), ...)
so that UI(s) has
(row 1) = (1,2,3,4,5,6,7,8,10,12,13, ...)
(row 2) = (9,11,16.21,32, ...)
(row 3) = (15,18,23,...)
-
r[seq_] := seq[[Flatten[Position[Append[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]]; (* Type 2 *)
row[0] = Mod[Prime[Range[4000]], 3];(* A039701 *)
row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]];
k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[
SortBy[Apply[Complement, Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]];
m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]];
p[n_] := Take[m[[n]], 12]
t = Table[p[n], {n, 1, 12}]
Grid[t] (* array *)
w[n_, k_] := t[[n]][[k]];
Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *)
(* Peter J. C. Moses, Dec 04 2024 *)
A379403
Rectangular array, read by descending antidiagonals: the Type 1 runlength index array of A039702 (primes mod 4); see Comments.
Original entry on oeis.org
1, 2, 5, 3, 7, 20, 4, 9, 26, 23, 6, 13, 39, 71, 48, 8, 15, 60, 93, 80, 49, 10, 25, 76, 137, 94, 89, 96, 11, 28, 79, 156, 140, 95, 204, 133, 12, 30, 92, 187, 157, 199, 241, 356, 242, 14, 32, 113, 230, 198, 236, 271, 512, 457, 243, 16, 45, 118, 260, 233, 268
Offset: 1
Corner:
1 2 3 4 6 8 10 11 12 14 16 17
5 7 9 13 15 25 28 30 32 45 47 51
20 26 39 60 76 79 92 113 118 123 132 136
23 71 93 137 156 187 230 260 283 296 318 326
48 80 94 140 157 198 233 265 286 343 377 382
49 89 95 199 236 268 472 595 635 702 732 755
96 204 241 271 473 600 642 841 899 956 1120 1279
133 356 512 601 643 844 906 961 1129 1402 1440 1482
242 457 549 869 921 962 1220 1403 1567 1910 1946 2097
243 460 566 870 1223 1406 1570 1917 1947 2102 2336 2655
248 991 1242 1483 1745 2103 2367 2664 2981 3322 3440 3953
249 992 1247 1484 1750 2118 2368 2667 3042 3323 3455 3956
Starting with s = A039702, we have for U*(s):
(row 1) = ((1,2), (2,3), (3,1), (4,3), (6,1), (8,3), (10,1), (11,3), ...)
c(1) = ((5,3), (7,1), (9,3), (13,1), (15,3), (20,3), (23,3), (25,1), (26,1), ...)
(row 2) = ((5,3), (7,1), (9,3), (13,1), (15,3), (25,1), (28,3), (30,1), (32,3), ...)
c(2) = ((20,3), (23,3), (26,1), ...)
(row 3) = ((20,3), (26,1), ...)
so that UI(s) has
(row 1) = (1,2,3,4,5,6,8,10,11, ...)
(row 2) = (5,7,9,13,15,25, ...)
(row 3) = (20,26,...)
-
r[seq_] := seq[[Flatten[Position[Prepend[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]];
row[0] = Mod[Prime[Range[4000]], 4];(* A039702 *)
row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]];
k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[SortBy[Apply[Complement,
Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]];
m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]];
p[n_] := Take[m[[n]], 12]
t = Table[p[n], {n, 1, 12}]
Grid[t]
w[n_, k_] := t[[n]][[k]];
Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten
(* Peter J. C. Moses, Dec 04 2024 *)
A379404
Rectangular array, by descending antidiagonals: the Type 2 runlength index array of A039702 (primes mod 4); see Comments.
Original entry on oeis.org
1, 2, 4, 3, 6, 19, 5, 8, 24, 46, 7, 12, 47, 78, 31, 9, 22, 65, 128, 77, 14, 10, 25, 72, 135, 93, 50, 91, 11, 27, 87, 154, 134, 92, 168, 239, 13, 29, 94, 197, 153, 183, 240, 337, 232, 15, 38, 97, 247, 196, 241, 400, 540, 254, 229, 16, 44, 114, 264, 246, 435
Offset: 1
Corner:
1 2 3 5 7 9 10 11 13 15 16 17
4 6 8 12 22 25 27 29 38 44 48 59
19 24 47 65 72 87 94 97 114 121 131 136
46 78 128 135 154 197 247 264 281 287 303 319
31 77 93 134 153 196 246 263 280 338 363 378
14 50 92 183 241 435 546 574 675 691 724 744
91 168 240 400 543 571 758 834 887 1041 1240 1261
239 337 540 568 707 833 886 1002 1381 1397 1407 1501
232 254 674 824 885 987 1380 1500 1811 1883 1976 2280
229 251 669 986 1377 1481 1802 1882 1971 2271 2444 2911
626 983 1376 1480 1944 2240 2439 2910 3179 3295 3710 3939
619 982 1333 1469 1943 2239 2366 2909 3178 3294 3701 3892
Starting with s = A039702, we have for U*(s):
(row 1) = ((1,2), (2,3), (3,1), (4,3), (5,3), (7,1), (9,3), (10,1), ...)
c(1) = ((4,3), (6,1), (8,3), (12,1), (14,3), (19,3), (22,3), (24,1), (25,1), ...)
(row 2) = ((4,3), (6,1), (8,3), (12,1), (22,3), (25,1), (27,3), (29,1) ...)
c(2) = ((14,3), (19,3), (24,1), ...)
(row 3) = ((19,3), (24,1), ...)
so that UI(s) has
(row 1) = (1,2,3,5,7,9,10,11,13, ...)
(row 2) = (4,6,8,12,22,25, ...)
(row 3) = (19,24,47, ...)
-
r[seq_] := seq[[Flatten[Position[Append[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]]; (* Type 2 *)
row[0] = Mod[Prime[Range[4000]], 4];(* A039701 *)
row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]];
k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[
SortBy[Apply[Complement, Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]];
m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]];
p[n_] := Take[m[[n]], 12]
t = Table[p[n], {n, 1, 12}]
Grid[t] (* array *)
w[n_, k_] := t[[n]][[k]];
Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *)
(* Peter J. C. Moses, Dec 04 2024 *)
A379047
Rectangular array read by descending antidiagonals: the Type 2 runlength index array of A000002 (the Kolakoski sequence); see Comments.
Original entry on oeis.org
1, 3, 2, 5, 4, 8, 6, 11, 28, 13, 7, 16, 35, 80, 53, 9, 18, 48, 121, 217, 112, 10, 22, 62, 135, 449, 332, 305, 12, 26, 67, 175, 472, 1478, 1451, 296, 14, 31, 89, 203, 513, 1974, 1947, 1358, 1331, 15, 38, 94, 244, 812, 2101, 2683, 1920, 1827, 964, 17, 40, 107
Offset: 1
Corner:
1 3 5 6 7 9 10 12 14 15 17 19
2 4 11 16 18 22 26 31 38 40 44 51
8 28 35 48 62 67 89 94 107 130 150 157
13 80 121 135 175 203 244 359 417 458 499 540
53 217 449 472 513 812 879 1069 1272 1511 1725 1786
112 332 1478 1974 2101 2423 2710 3282 3638 3715 3950 4145
305 1451 1947 2683 2883 3605 3706 3827 4528 4749 4963 5076
296 1358 1920 2590 2850 3542 5745 6400 7103 7567 7796 8346
1331 1827 2491 2805 3437 5652 6373 7769 8265 9315 11508 11738
Using s = A000002 as an example, we have for V*(s):
(row 1) = ((1,1), (3,2), (5,1), (6,2), (7,1), (9,2), (10,1), (12,2), (14,1),...)
c(1) = ((2,2), (4,1), (8,2), (11,2), (13,1), (16,1), (18,2), (22,1), (26,2), ...)
(row 2) = ((2,2), (4,1), (11,2), (16,1), (18,2), (22,1), (26,2), (31,1), (35,2), ...)
c(2) = (8,2), (13,1), (28,1), ...)
(row 3) = (8,2), (28,1),
so that VI(s) has
(row 1) = (1,3,5,6,7,9,10,12, ...)
(row 2) = (2,4,11,16,18,22,26, ...)
(row 3) = (8,28,35,48,62,67,...)
-
r[seq_] := seq[[Flatten[Position[Append[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]]; (* Type 1 *)
row[0] = Prepend[Nest[Flatten[Partition[#, 2] /. {{2, 2} -> {2, 2, 1, 1}, {2, 1} -> {2, 2, 1}, {1, 2} -> {2, 1, 1}, {1, 1} -> {2, 1}}] &, {2, 2}, 24], 1]; (* A000002 *)
row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]];
k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[
SortBy[Apply[Complement, Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]];
m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]];
p[n_] := Take[m[[n]], 12]
t = Table[p[n], {n, 1, 12}]
Grid[t] (* array *)
w[n_, k_] := t[[n]][[k]];
Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *)
(* Peter J. C. Moses, Dec 04 2024 *)
A379536
Rectangular array, read by descending antidiagonals: the Type 1 runlength index array of A378142; see Comments.
Original entry on oeis.org
1, 6, 2, 7, 12, 3, 11, 14, 18, 4, 13, 17, 21, 25, 5, 16, 20, 24, 39, 28, 8, 19, 23, 36, 55, 40, 29, 9, 22, 35, 50, 72, 56, 41, 30, 10, 26, 49, 71, 92, 73, 61, 42, 31, 15, 27, 52, 87, 103, 93, 78, 62, 45, 32, 33, 34, 54, 102, 124, 104, 94, 79, 65, 46, 47, 166, 37, 58, 113, 135, 125, 105, 97, 84, 66, 99, 179, 618
Offset: 1
Corner:
1 6 7 11 13 16 19 22 26 27 34 37
2 12 14 17 20 23 35 49 52 54 58 60
3 18 21 24 36 50 71 87 102 113 116 119
4 25 39 55 72 92 103 124 135 157 170 187
5 28 40 56 73 93 104 125 136 160 171 188
8 29 41 61 78 94 105 128 137 161 172 193
9 30 42 62 79 97 108 129 140 162 173 194
10 31 45 65 84 98 109 130 141 163 174 197
15 32 46 66 110 131 142 164 177 198 216 231
33 47 99 147 165 178 199 248 297 310 333 417
166 179 232 285 298 311 498 549 564 581 631 750
618 830 882 1262 1342 1561 1976 3056 3767 4616 5459 6112
Starting with s = A000002, we have for U*(s):
(row 1) = ((1,1), (2,1), (3,1), (4,1), (5,1), (6,0), (7,1), (8,1), (9,1), (10,1), (11,0) ...)
c(1) = ((2,1), (3,1), (4,1), (5,1), (8,1), (9,1), (10,1), (12,0), (14,1), (15,1), ...)
(row 2) = ((2,1), (12,2), (14,1), (17,0), (20,1), (22,0), (34,1), ...)
c(2) = ((3,1), (4,1), (5,1), (8,1), (9,1), (10,1), (15,1), (18,0), ...)
(row 3) = ((3,1), (18,0), (21,1), (24,0), ...)
so that UI(s) has
(row 1) = (1,6,7,11,13,16,19....)
(row 2) = (2,12,14,17,20,23,...)
(row 3) = (3,18,21,24,36,...)
-
r[seq_] := seq[[Flatten[Position[Prepend[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]];
z = 8000; r1 = 2^(1/4); s1 = 2^(1/2); t1 = 2^(3/4);
row[0] = Table[Floor[n (r1 + t1)/s1] - Floor[n r1/s1] - Floor[n t1/s1], {n, 1, z}];
row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]];
k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[SortBy[Apply[Complement,
Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]];
m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]];
zz = 12
p[n_] := Take[m[[n]], zz]
t = Table[p[n], {n, 1, zz}]
Grid[t] (* array *)
w[n_, k_] := t[[n]][[k]];
Table[w[n - k + 1, k], {n, zz}, {k, n, 1, -1}] // Flatten (* sequence *)
(* Peter J.C.Moses,Dec 04 2024 *)
Showing 1-6 of 6 results.
Comments