A379401
Rectangular array, read by descending antidiagonals: the Type 1 runlength index array of A039701 (primes mod 3); see Comments.
Original entry on oeis.org
1, 2, 10, 3, 12, 17, 4, 16, 22, 56, 5, 19, 33, 75, 57, 6, 24, 38, 97, 134, 98, 7, 37, 41, 115, 165, 274, 109, 8, 40, 48, 162, 181, 299, 275, 166, 9, 47, 55, 180, 220, 466, 318, 276, 241, 11, 52, 68, 201, 273, 554, 467, 363, 279, 256, 13, 59, 92, 264, 294
Offset: 1
Corner:
1 2 3 4 5 6 7 8 9 11 13 14
10 12 16 19 24 37 40 47 52 59 72 74
17 22 33 38 41 48 55 68 92 101 104 112
56 75 97 115 162 180 201 264 293 328 359 440
57 134 165 181 220 273 294 341 360 451 545 623
98 274 299 466 554 624 661 742 786 836 898 941
109 275 318 467 555 631 704 749 823 839 903 1046
166 276 363 500 600 758 824 856 912 1059 1176 1212
241 279 364 505 601 861 913 1076 1177 1229 1258 1368
256 510 608 866 964 1077 1180 1533 1645 2006 2156 2215
421 521 709 1088 1181 2007 2163 2248 2551 2690 2919 3138
424 522 710 1089 1184 2008 2174 2785 2920 3141 3466 3938
Starting with s = A039701, we have for U*(s):
(row 1) = ((1,1), (2,0), (3,2), (4,2), (5,2), (6,1), (7,2), (8,1), (9,2), ...)
c(1) = ((10,2), (12,1), (16,2), (17,2), (14,1), (17,1), (19,1), (22,1), (24,2), ...)
(row 2) = ((10,2), (12,1), (16,2), (19,1), (24,2), (23,1), (27,2), (29,1), (36,2), ...)
c(2) = ((17,2), (22,1), (33,2), ...)
(row 3) = ((17,2), (22,1), ...)
so that UI(s) has
(row 1) = (1,2,3,4,5,6,7,8,9,11,13, ...)
(row 2) = (10,12,16.19,24, ...)
(row 3) = (17,22,33,...)
-
r[seq_] := seq[[Flatten[Position[Prepend[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]]; (* Type 1 *)
row[0] = Mod[Prime[Range[4000]], 3];(* A039701 *)
row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]];
k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[
SortBy[Apply[Complement, Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]];
m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]];
p[n_] := Take[m[[n]], 12]
t = Table[p[n], {n, 1, 12}]
Grid[t] (* array *)
w[n_, k_] := t[[n]][[k]];
Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *)
(* Peter J. C. Moses, Dec 04 2024 *)
A379403
Rectangular array, read by descending antidiagonals: the Type 1 runlength index array of A039702 (primes mod 4); see Comments.
Original entry on oeis.org
1, 2, 5, 3, 7, 20, 4, 9, 26, 23, 6, 13, 39, 71, 48, 8, 15, 60, 93, 80, 49, 10, 25, 76, 137, 94, 89, 96, 11, 28, 79, 156, 140, 95, 204, 133, 12, 30, 92, 187, 157, 199, 241, 356, 242, 14, 32, 113, 230, 198, 236, 271, 512, 457, 243, 16, 45, 118, 260, 233, 268
Offset: 1
Corner:
1 2 3 4 6 8 10 11 12 14 16 17
5 7 9 13 15 25 28 30 32 45 47 51
20 26 39 60 76 79 92 113 118 123 132 136
23 71 93 137 156 187 230 260 283 296 318 326
48 80 94 140 157 198 233 265 286 343 377 382
49 89 95 199 236 268 472 595 635 702 732 755
96 204 241 271 473 600 642 841 899 956 1120 1279
133 356 512 601 643 844 906 961 1129 1402 1440 1482
242 457 549 869 921 962 1220 1403 1567 1910 1946 2097
243 460 566 870 1223 1406 1570 1917 1947 2102 2336 2655
248 991 1242 1483 1745 2103 2367 2664 2981 3322 3440 3953
249 992 1247 1484 1750 2118 2368 2667 3042 3323 3455 3956
Starting with s = A039702, we have for U*(s):
(row 1) = ((1,2), (2,3), (3,1), (4,3), (6,1), (8,3), (10,1), (11,3), ...)
c(1) = ((5,3), (7,1), (9,3), (13,1), (15,3), (20,3), (23,3), (25,1), (26,1), ...)
(row 2) = ((5,3), (7,1), (9,3), (13,1), (15,3), (25,1), (28,3), (30,1), (32,3), ...)
c(2) = ((20,3), (23,3), (26,1), ...)
(row 3) = ((20,3), (26,1), ...)
so that UI(s) has
(row 1) = (1,2,3,4,5,6,8,10,11, ...)
(row 2) = (5,7,9,13,15,25, ...)
(row 3) = (20,26,...)
-
r[seq_] := seq[[Flatten[Position[Prepend[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]];
row[0] = Mod[Prime[Range[4000]], 4];(* A039702 *)
row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]];
k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[SortBy[Apply[Complement,
Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]];
m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]];
p[n_] := Take[m[[n]], 12]
t = Table[p[n], {n, 1, 12}]
Grid[t]
w[n_, k_] := t[[n]][[k]];
Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten
(* Peter J. C. Moses, Dec 04 2024 *)
A379404
Rectangular array, by descending antidiagonals: the Type 2 runlength index array of A039702 (primes mod 4); see Comments.
Original entry on oeis.org
1, 2, 4, 3, 6, 19, 5, 8, 24, 46, 7, 12, 47, 78, 31, 9, 22, 65, 128, 77, 14, 10, 25, 72, 135, 93, 50, 91, 11, 27, 87, 154, 134, 92, 168, 239, 13, 29, 94, 197, 153, 183, 240, 337, 232, 15, 38, 97, 247, 196, 241, 400, 540, 254, 229, 16, 44, 114, 264, 246, 435
Offset: 1
Corner:
1 2 3 5 7 9 10 11 13 15 16 17
4 6 8 12 22 25 27 29 38 44 48 59
19 24 47 65 72 87 94 97 114 121 131 136
46 78 128 135 154 197 247 264 281 287 303 319
31 77 93 134 153 196 246 263 280 338 363 378
14 50 92 183 241 435 546 574 675 691 724 744
91 168 240 400 543 571 758 834 887 1041 1240 1261
239 337 540 568 707 833 886 1002 1381 1397 1407 1501
232 254 674 824 885 987 1380 1500 1811 1883 1976 2280
229 251 669 986 1377 1481 1802 1882 1971 2271 2444 2911
626 983 1376 1480 1944 2240 2439 2910 3179 3295 3710 3939
619 982 1333 1469 1943 2239 2366 2909 3178 3294 3701 3892
Starting with s = A039702, we have for U*(s):
(row 1) = ((1,2), (2,3), (3,1), (4,3), (5,3), (7,1), (9,3), (10,1), ...)
c(1) = ((4,3), (6,1), (8,3), (12,1), (14,3), (19,3), (22,3), (24,1), (25,1), ...)
(row 2) = ((4,3), (6,1), (8,3), (12,1), (22,3), (25,1), (27,3), (29,1) ...)
c(2) = ((14,3), (19,3), (24,1), ...)
(row 3) = ((19,3), (24,1), ...)
so that UI(s) has
(row 1) = (1,2,3,5,7,9,10,11,13, ...)
(row 2) = (4,6,8,12,22,25, ...)
(row 3) = (19,24,47, ...)
-
r[seq_] := seq[[Flatten[Position[Append[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]]; (* Type 2 *)
row[0] = Mod[Prime[Range[4000]], 4];(* A039701 *)
row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]];
k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[
SortBy[Apply[Complement, Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]];
m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]];
p[n_] := Take[m[[n]], 12]
t = Table[p[n], {n, 1, 12}]
Grid[t] (* array *)
w[n_, k_] := t[[n]][[k]];
Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *)
(* Peter J. C. Moses, Dec 04 2024 *)
Showing 1-3 of 3 results.
Comments