A379402
Rectangular array, read by descending antidiagonals: the Type 2 runlength index array of A039701 (primes mod 3); see Comments.
Original entry on oeis.org
1, 2, 9, 3, 11, 15, 4, 16, 18, 54, 5, 21, 23, 58, 91, 6, 32, 36, 102, 110, 205, 7, 37, 39, 129, 160, 272, 194, 8, 40, 46, 161, 167, 419, 271, 139, 10, 47, 55, 174, 238, 499, 416, 260, 86, 12, 56, 73, 245, 273, 597, 496, 359, 257, 357, 13, 67, 96, 274, 292
Offset: 1
Corner:
1 2 3 4 5 6 7 8 10 12 13 14
9 11 16 21 32 37 40 47 56 67 71 74
15 18 23 36 39 46 55 73 96 99 107 111
54 58 102 129 161 174 245 274 311 326 423 515
91 110 160 167 238 273 292 321 420 508 598 621
205 272 419 499 597 618 703 733 813 835 896 932
194 271 416 496 576 617 702 730 776 834 989 1128
139 260 359 489 699 713 771 831 988 1127 1173 1190
86 257 358 464 698 830 987 1124 1164 1185 1251 1298
357 461 697 829 942 1107 1412 1498 1717 2059 2138 2179
356 438 889 1062 1714 2046 2137 2176 2551 2820 2927 3270
291 437 882 1055 1711 2033 2550 2741 2926 3269 3699 3918
Starting with s = A039701, we have for U*(s):
(row 1) = ((1,1), (2,0), (3,2), (4,2), (5,2), (6,1), (7,2), (8,1), (10,2), ...)
c(1) = ((9,2), (11,1), (15,2), (16,2), (18,1), (21,1), (23,1), (32,2), ...)
(row 2) = ((9,2), (11,1), (16,2), (21,1), (36,1), ...)
c(2) = ((15,2), (37,1), ...)
(row 3) = ((15,2), (18,1), (23,2), ...)
so that UI(s) has
(row 1) = (1,2,3,4,5,6,7,8,10,12,13, ...)
(row 2) = (9,11,16.21,32, ...)
(row 3) = (15,18,23,...)
-
r[seq_] := seq[[Flatten[Position[Append[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]]; (* Type 2 *)
row[0] = Mod[Prime[Range[4000]], 3];(* A039701 *)
row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]];
k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[
SortBy[Apply[Complement, Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]];
m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]];
p[n_] := Take[m[[n]], 12]
t = Table[p[n], {n, 1, 12}]
Grid[t] (* array *)
w[n_, k_] := t[[n]][[k]];
Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *)
(* Peter J. C. Moses, Dec 04 2024 *)
A379403
Rectangular array, read by descending antidiagonals: the Type 1 runlength index array of A039702 (primes mod 4); see Comments.
Original entry on oeis.org
1, 2, 5, 3, 7, 20, 4, 9, 26, 23, 6, 13, 39, 71, 48, 8, 15, 60, 93, 80, 49, 10, 25, 76, 137, 94, 89, 96, 11, 28, 79, 156, 140, 95, 204, 133, 12, 30, 92, 187, 157, 199, 241, 356, 242, 14, 32, 113, 230, 198, 236, 271, 512, 457, 243, 16, 45, 118, 260, 233, 268
Offset: 1
Corner:
1 2 3 4 6 8 10 11 12 14 16 17
5 7 9 13 15 25 28 30 32 45 47 51
20 26 39 60 76 79 92 113 118 123 132 136
23 71 93 137 156 187 230 260 283 296 318 326
48 80 94 140 157 198 233 265 286 343 377 382
49 89 95 199 236 268 472 595 635 702 732 755
96 204 241 271 473 600 642 841 899 956 1120 1279
133 356 512 601 643 844 906 961 1129 1402 1440 1482
242 457 549 869 921 962 1220 1403 1567 1910 1946 2097
243 460 566 870 1223 1406 1570 1917 1947 2102 2336 2655
248 991 1242 1483 1745 2103 2367 2664 2981 3322 3440 3953
249 992 1247 1484 1750 2118 2368 2667 3042 3323 3455 3956
Starting with s = A039702, we have for U*(s):
(row 1) = ((1,2), (2,3), (3,1), (4,3), (6,1), (8,3), (10,1), (11,3), ...)
c(1) = ((5,3), (7,1), (9,3), (13,1), (15,3), (20,3), (23,3), (25,1), (26,1), ...)
(row 2) = ((5,3), (7,1), (9,3), (13,1), (15,3), (25,1), (28,3), (30,1), (32,3), ...)
c(2) = ((20,3), (23,3), (26,1), ...)
(row 3) = ((20,3), (26,1), ...)
so that UI(s) has
(row 1) = (1,2,3,4,5,6,8,10,11, ...)
(row 2) = (5,7,9,13,15,25, ...)
(row 3) = (20,26,...)
-
r[seq_] := seq[[Flatten[Position[Prepend[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]];
row[0] = Mod[Prime[Range[4000]], 4];(* A039702 *)
row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]];
k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[SortBy[Apply[Complement,
Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]];
m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]];
p[n_] := Take[m[[n]], 12]
t = Table[p[n], {n, 1, 12}]
Grid[t]
w[n_, k_] := t[[n]][[k]];
Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten
(* Peter J. C. Moses, Dec 04 2024 *)
A379404
Rectangular array, by descending antidiagonals: the Type 2 runlength index array of A039702 (primes mod 4); see Comments.
Original entry on oeis.org
1, 2, 4, 3, 6, 19, 5, 8, 24, 46, 7, 12, 47, 78, 31, 9, 22, 65, 128, 77, 14, 10, 25, 72, 135, 93, 50, 91, 11, 27, 87, 154, 134, 92, 168, 239, 13, 29, 94, 197, 153, 183, 240, 337, 232, 15, 38, 97, 247, 196, 241, 400, 540, 254, 229, 16, 44, 114, 264, 246, 435
Offset: 1
Corner:
1 2 3 5 7 9 10 11 13 15 16 17
4 6 8 12 22 25 27 29 38 44 48 59
19 24 47 65 72 87 94 97 114 121 131 136
46 78 128 135 154 197 247 264 281 287 303 319
31 77 93 134 153 196 246 263 280 338 363 378
14 50 92 183 241 435 546 574 675 691 724 744
91 168 240 400 543 571 758 834 887 1041 1240 1261
239 337 540 568 707 833 886 1002 1381 1397 1407 1501
232 254 674 824 885 987 1380 1500 1811 1883 1976 2280
229 251 669 986 1377 1481 1802 1882 1971 2271 2444 2911
626 983 1376 1480 1944 2240 2439 2910 3179 3295 3710 3939
619 982 1333 1469 1943 2239 2366 2909 3178 3294 3701 3892
Starting with s = A039702, we have for U*(s):
(row 1) = ((1,2), (2,3), (3,1), (4,3), (5,3), (7,1), (9,3), (10,1), ...)
c(1) = ((4,3), (6,1), (8,3), (12,1), (14,3), (19,3), (22,3), (24,1), (25,1), ...)
(row 2) = ((4,3), (6,1), (8,3), (12,1), (22,3), (25,1), (27,3), (29,1) ...)
c(2) = ((14,3), (19,3), (24,1), ...)
(row 3) = ((19,3), (24,1), ...)
so that UI(s) has
(row 1) = (1,2,3,5,7,9,10,11,13, ...)
(row 2) = (4,6,8,12,22,25, ...)
(row 3) = (19,24,47, ...)
-
r[seq_] := seq[[Flatten[Position[Append[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]]; (* Type 2 *)
row[0] = Mod[Prime[Range[4000]], 4];(* A039701 *)
row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]];
k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[
SortBy[Apply[Complement, Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]];
m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]];
p[n_] := Take[m[[n]], 12]
t = Table[p[n], {n, 1, 12}]
Grid[t] (* array *)
w[n_, k_] := t[[n]][[k]];
Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *)
(* Peter J. C. Moses, Dec 04 2024 *)
Showing 1-3 of 3 results.
Comments