A379401
Rectangular array, read by descending antidiagonals: the Type 1 runlength index array of A039701 (primes mod 3); see Comments.
Original entry on oeis.org
1, 2, 10, 3, 12, 17, 4, 16, 22, 56, 5, 19, 33, 75, 57, 6, 24, 38, 97, 134, 98, 7, 37, 41, 115, 165, 274, 109, 8, 40, 48, 162, 181, 299, 275, 166, 9, 47, 55, 180, 220, 466, 318, 276, 241, 11, 52, 68, 201, 273, 554, 467, 363, 279, 256, 13, 59, 92, 264, 294
Offset: 1
Corner:
1 2 3 4 5 6 7 8 9 11 13 14
10 12 16 19 24 37 40 47 52 59 72 74
17 22 33 38 41 48 55 68 92 101 104 112
56 75 97 115 162 180 201 264 293 328 359 440
57 134 165 181 220 273 294 341 360 451 545 623
98 274 299 466 554 624 661 742 786 836 898 941
109 275 318 467 555 631 704 749 823 839 903 1046
166 276 363 500 600 758 824 856 912 1059 1176 1212
241 279 364 505 601 861 913 1076 1177 1229 1258 1368
256 510 608 866 964 1077 1180 1533 1645 2006 2156 2215
421 521 709 1088 1181 2007 2163 2248 2551 2690 2919 3138
424 522 710 1089 1184 2008 2174 2785 2920 3141 3466 3938
Starting with s = A039701, we have for U*(s):
(row 1) = ((1,1), (2,0), (3,2), (4,2), (5,2), (6,1), (7,2), (8,1), (9,2), ...)
c(1) = ((10,2), (12,1), (16,2), (17,2), (14,1), (17,1), (19,1), (22,1), (24,2), ...)
(row 2) = ((10,2), (12,1), (16,2), (19,1), (24,2), (23,1), (27,2), (29,1), (36,2), ...)
c(2) = ((17,2), (22,1), (33,2), ...)
(row 3) = ((17,2), (22,1), ...)
so that UI(s) has
(row 1) = (1,2,3,4,5,6,7,8,9,11,13, ...)
(row 2) = (10,12,16.19,24, ...)
(row 3) = (17,22,33,...)
-
r[seq_] := seq[[Flatten[Position[Prepend[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]]; (* Type 1 *)
row[0] = Mod[Prime[Range[4000]], 3];(* A039701 *)
row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]];
k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[
SortBy[Apply[Complement, Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]];
m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]];
p[n_] := Take[m[[n]], 12]
t = Table[p[n], {n, 1, 12}]
Grid[t] (* array *)
w[n_, k_] := t[[n]][[k]];
Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *)
(* Peter J. C. Moses, Dec 04 2024 *)
A379402
Rectangular array, read by descending antidiagonals: the Type 2 runlength index array of A039701 (primes mod 3); see Comments.
Original entry on oeis.org
1, 2, 9, 3, 11, 15, 4, 16, 18, 54, 5, 21, 23, 58, 91, 6, 32, 36, 102, 110, 205, 7, 37, 39, 129, 160, 272, 194, 8, 40, 46, 161, 167, 419, 271, 139, 10, 47, 55, 174, 238, 499, 416, 260, 86, 12, 56, 73, 245, 273, 597, 496, 359, 257, 357, 13, 67, 96, 274, 292
Offset: 1
Corner:
1 2 3 4 5 6 7 8 10 12 13 14
9 11 16 21 32 37 40 47 56 67 71 74
15 18 23 36 39 46 55 73 96 99 107 111
54 58 102 129 161 174 245 274 311 326 423 515
91 110 160 167 238 273 292 321 420 508 598 621
205 272 419 499 597 618 703 733 813 835 896 932
194 271 416 496 576 617 702 730 776 834 989 1128
139 260 359 489 699 713 771 831 988 1127 1173 1190
86 257 358 464 698 830 987 1124 1164 1185 1251 1298
357 461 697 829 942 1107 1412 1498 1717 2059 2138 2179
356 438 889 1062 1714 2046 2137 2176 2551 2820 2927 3270
291 437 882 1055 1711 2033 2550 2741 2926 3269 3699 3918
Starting with s = A039701, we have for U*(s):
(row 1) = ((1,1), (2,0), (3,2), (4,2), (5,2), (6,1), (7,2), (8,1), (10,2), ...)
c(1) = ((9,2), (11,1), (15,2), (16,2), (18,1), (21,1), (23,1), (32,2), ...)
(row 2) = ((9,2), (11,1), (16,2), (21,1), (36,1), ...)
c(2) = ((15,2), (37,1), ...)
(row 3) = ((15,2), (18,1), (23,2), ...)
so that UI(s) has
(row 1) = (1,2,3,4,5,6,7,8,10,12,13, ...)
(row 2) = (9,11,16.21,32, ...)
(row 3) = (15,18,23,...)
-
r[seq_] := seq[[Flatten[Position[Append[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]]; (* Type 2 *)
row[0] = Mod[Prime[Range[4000]], 3];(* A039701 *)
row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]];
k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[
SortBy[Apply[Complement, Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]];
m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]];
p[n_] := Take[m[[n]], 12]
t = Table[p[n], {n, 1, 12}]
Grid[t] (* array *)
w[n_, k_] := t[[n]][[k]];
Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *)
(* Peter J. C. Moses, Dec 04 2024 *)
A379404
Rectangular array, by descending antidiagonals: the Type 2 runlength index array of A039702 (primes mod 4); see Comments.
Original entry on oeis.org
1, 2, 4, 3, 6, 19, 5, 8, 24, 46, 7, 12, 47, 78, 31, 9, 22, 65, 128, 77, 14, 10, 25, 72, 135, 93, 50, 91, 11, 27, 87, 154, 134, 92, 168, 239, 13, 29, 94, 197, 153, 183, 240, 337, 232, 15, 38, 97, 247, 196, 241, 400, 540, 254, 229, 16, 44, 114, 264, 246, 435
Offset: 1
Corner:
1 2 3 5 7 9 10 11 13 15 16 17
4 6 8 12 22 25 27 29 38 44 48 59
19 24 47 65 72 87 94 97 114 121 131 136
46 78 128 135 154 197 247 264 281 287 303 319
31 77 93 134 153 196 246 263 280 338 363 378
14 50 92 183 241 435 546 574 675 691 724 744
91 168 240 400 543 571 758 834 887 1041 1240 1261
239 337 540 568 707 833 886 1002 1381 1397 1407 1501
232 254 674 824 885 987 1380 1500 1811 1883 1976 2280
229 251 669 986 1377 1481 1802 1882 1971 2271 2444 2911
626 983 1376 1480 1944 2240 2439 2910 3179 3295 3710 3939
619 982 1333 1469 1943 2239 2366 2909 3178 3294 3701 3892
Starting with s = A039702, we have for U*(s):
(row 1) = ((1,2), (2,3), (3,1), (4,3), (5,3), (7,1), (9,3), (10,1), ...)
c(1) = ((4,3), (6,1), (8,3), (12,1), (14,3), (19,3), (22,3), (24,1), (25,1), ...)
(row 2) = ((4,3), (6,1), (8,3), (12,1), (22,3), (25,1), (27,3), (29,1) ...)
c(2) = ((14,3), (19,3), (24,1), ...)
(row 3) = ((19,3), (24,1), ...)
so that UI(s) has
(row 1) = (1,2,3,5,7,9,10,11,13, ...)
(row 2) = (4,6,8,12,22,25, ...)
(row 3) = (19,24,47, ...)
-
r[seq_] := seq[[Flatten[Position[Append[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]]; (* Type 2 *)
row[0] = Mod[Prime[Range[4000]], 4];(* A039701 *)
row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]];
k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[
SortBy[Apply[Complement, Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]];
m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]];
p[n_] := Take[m[[n]], 12]
t = Table[p[n], {n, 1, 12}]
Grid[t] (* array *)
w[n_, k_] := t[[n]][[k]];
Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *)
(* Peter J. C. Moses, Dec 04 2024 *)
Showing 1-3 of 3 results.
Comments