A379052 Number of fixed site animals with n nodes on the nodes of the floret pentagonal tiling.
9, 15, 39, 124, 405, 1344, 4548, 15765, 55763, 199928, 723468, 2637378, 9677509, 35714337, 132445734, 493209254, 1843263534, 6910868397
Offset: 1
References
- Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Sections 2.7, 6.2 and 9.4.
Links
- Anthony J. Guttman (Ed.), Polygons, Polyominoes, and Polycubes, Canopus Academic Publishing Limited, Bristol, 2009.
- Iwan Jensen, Enumerations of Lattice Animals and Trees, Journal of Statistical Physics 102 (2001), 865-881.
- N. Madras, A pattern theorem for lattice clusters, Annals of Combinatorics, 3 (1999), 357-384.
- N. Madras and G. Slade, The Self-Avoiding Walk, Birkhäuser Publishing (1996).
- D. Hugh Redelmeier, Counting Polyominoes: Yet Another Attack, Discrete Mathematics 36 (1981), 191-203.
- Markus Vöge and Anthony J. Guttman, On the number of hexagonal polyominoes, Theoretical Computer Science, 307 (2003), 433-453.
Crossrefs
Formula
It is widely believed site animals on 2-dimensional lattices grow asymptotically to kc^n/n, where k is a constant and c is the growth constant, dependent only on the lattice. See the Madras and Slade reference.
Comments