cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A379084 a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+k-1,k) * binomial(2*n+k,n-2*k).

Original entry on oeis.org

1, 2, 10, 62, 394, 2562, 16966, 113794, 770458, 5254658, 36046470, 248449104, 1719175846, 11935608518, 83100064834, 579994824042, 4056746450106, 28428354905268, 199550820571858, 1402832286126650, 9875127071717694, 69599814539512900, 491081313666879968, 3468458841769675496
Offset: 0

Views

Author

Seiichi Manyama, Dec 15 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(2*n+k-1, k)*binomial(2*n+k, n-2*k));

Formula

a(n) = [x^n] 1/( 1/(1 + x) - x^2 )^(2*n).
a(n) == 0 (mod 2) for n>0.

A379089 G.f. A(x) satisfies A(x) = (1 + x*A(x)^2) * (1 + x^3*A(x)^7).

Original entry on oeis.org

1, 1, 2, 6, 24, 108, 503, 2385, 11537, 56992, 286769, 1464317, 7564803, 39457205, 207500615, 1099066181, 5858206629, 31399478619, 169132215962, 915057263082, 4970445985138, 27095859218337, 148193424618950, 812923791698402, 4471543767583949, 24657936277287687
Offset: 0

Views

Author

Seiichi Manyama, Dec 15 2024

Keywords

Crossrefs

Cf. A379085.

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n+k+1, k)*binomial(2*n+k+1, n-3*k)/(2*n+k+1));

Formula

G.f. A(x) satisfies A(x) = exp( 1/2 * Sum_{k>=1} A379085(k) * x^k/k ).
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n+k+1,k) * binomial(2*n+k+1,n-3*k)/(2*n+k+1) = (1/(2*n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+k,k) * binomial(2*n+k+1,n-3*k).

A379082 Expansion of (1/x) * Series_Reversion( x * (1/(1 + x) - x^3)^2 ).

Original entry on oeis.org

1, 2, 5, 16, 64, 288, 1354, 6496, 31728, 157818, 798098, 4091712, 21211165, 110969430, 585116287, 3106334810, 16590881379, 89085610328, 480627775528, 2604103448334, 14163573236255, 77302955664902, 423245859576867, 2324046398587426, 12795255089638583, 70617777139027756
Offset: 0

Views

Author

Seiichi Manyama, Dec 15 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n\3, binomial(2*n+k+2, k)*binomial(2*n+k+2, n-3*k)/(2*n+k+2));

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{k>=1} A379085(k) * x^k/k ).
(2) A(x) = ( (1 + x*A(x)) * (1 + x^3*A(x)^(7/2)) )^2.
(3) A(x) = B(x)^2 where B(x) is the g.f. of A379089.
a(n) = (1/(n+1)) * [x^n] 1/( 1/(1 + x) - x^3 )^(2*(n+1)).
a(n) = 2 * Sum_{k=0..floor(n/3)} binomial(2*n+k+2,k) * binomial(2*n+k+2,n-3*k)/(2*n+k+2) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+k+1,k) * binomial(2*n+k+2,n-3*k).
Showing 1-3 of 3 results.