cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A379086 a(n) = Sum_{k=0..floor(n/2)} binomial(3*n+k-1,k) * binomial(3*n+k,n-2*k).

Original entry on oeis.org

1, 3, 21, 174, 1509, 13443, 121962, 1120899, 10401021, 97230090, 914283621, 8638552464, 81945757734, 779949538176, 7444735446813, 71237074583589, 683125330952205, 6563268117869076, 63164380112090814, 608805362150884731, 5875874727915635409, 56780302474503539427, 549294315060885105744
Offset: 0

Views

Author

Seiichi Manyama, Dec 15 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(3*n+k-1, k)*binomial(3*n+k, n-2*k));

Formula

a(n) = [x^n] 1/( 1/(1 + x) - x^2 )^(3*n).
a(n) == 0 (mod 3) for n>0.

A379090 G.f. A(x) satisfies A(x) = (1 + x*A(x)^3) * (1 + x^3*A(x)^10).

Original entry on oeis.org

1, 1, 3, 13, 69, 409, 2578, 16883, 113606, 780710, 5457275, 38687680, 277511415, 2010540125, 14690727157, 108136401031, 801111528944, 5968615651663, 44692765261977, 336164201398198, 2538745667960316, 19242953564513454, 146340183680256968, 1116267947369766774
Offset: 0

Views

Author

Seiichi Manyama, Dec 15 2024

Keywords

Crossrefs

Cf. A379087.

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(3*n+k+1, k)*binomial(3*n+k+1, n-3*k)/(3*n+k+1));

Formula

G.f. A(x) satisfies A(x) = exp( 1/3 * Sum_{k>=1} A379087(k) * x^k/k ).
a(n) = Sum_{k=0..floor(n/3)} binomial(3*n+k+1,k) * binomial(3*n+k+1,n-3*k)/(3*n+k+1) = (1/(3*n+1)) * Sum_{k=0..floor(n/3)} binomial(3*n+k,k) * binomial(3*n+k+1,n-3*k).

A379083 Expansion of (1/x) * Series_Reversion( x * (1/(1 + x) - x^3)^3 ).

Original entry on oeis.org

1, 3, 12, 58, 321, 1941, 12405, 82188, 558567, 3870694, 27245268, 194269872, 1400352702, 10187886330, 74710928103, 551676261727, 4098401671788, 30610414484517, 229717037309281, 1731295701244008, 13098454442320593, 99444838611953627, 757393732018935552, 5785220154325055826
Offset: 0

Views

Author

Seiichi Manyama, Dec 15 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3*sum(k=0, n\3, binomial(3*n+k+3, k)*binomial(3*n+k+3, n-3*k)/(3*n+k+3));

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{k>=1} A379087(k) * x^k/k ).
(2) A(x) = ( (1 + x*A(x)) * (1 + x^3*A(x)^(10/3)) )^3.
(3) A(x) = B(x)^3 where B(x) is the g.f. of A379090.
a(n) = (1/(n+1)) * [x^n] 1/( 1/(1 + x) - x^3 )^(3*(n+1)).
a(n) = 3 * Sum_{k=0..floor(n/3)} binomial(3*n+k+3,k) * binomial(3*n+k+3,n-3*k)/(3*n+k+3) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(3*n+k+2,k) * binomial(3*n+k+3,n-3*k).
Showing 1-3 of 3 results.