A379094 Numbers whose factors in the canonical prime factorization neither increase weakly nor decrease weakly.
60, 84, 90, 120, 126, 132, 156, 168, 180, 204, 228, 240, 252, 264, 270, 276, 280, 300, 312, 315, 336, 348, 350, 360, 372, 378, 408, 420, 440, 444, 456, 480, 492, 495, 504, 516, 520, 525, 528, 540, 550, 552, 560, 564, 585, 588, 594, 600, 616, 624, 630, 636, 650
Offset: 1
Keywords
Examples
60 is a term because the factors in the canonical prime factorization are [4, 3, 5], a list that is neither increasing nor decreasing. Primorials (A002110) are not terms of this sequence.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(ArrayTools): fact := n -> local p; [seq(p[1]^p[2], p in ifactors(n)[2])]: isA379094 := proc(n) local f; f := fact(n); is(not IsMonotonic(f, direction=decreasing, strict=false) and not IsMonotonic(f, direction=increasing, strict=false)) end: select(isA379094, [seq(1..650)]);
-
Mathematica
Select[Range[650], Function[f, NoneTrue[{Sort[f], ReverseSort[f]}, # == f &]][Power @@@ FactorInteger[#]] &] (* Michael De Vlieger, Dec 18 2024 *)
-
PARI
is_a379094(n) = my(C=apply(x->x[1]^x[2], Vec(factor(n)~))); vecsort(C)!=C && vecsort(C,,4)!=C \\ Hugo Pfoertner, Dec 18 2024
Comments