A379115 a(n) = A328845(n) mod 5, where A328845 is the first Fibonacci based variant of arithmetic derivative.
0, 0, 1, 2, 4, 0, 2, 3, 2, 2, 0, 4, 0, 3, 3, 0, 2, 2, 3, 1, 0, 3, 4, 2, 2, 0, 4, 4, 0, 4, 0, 4, 0, 4, 1, 0, 4, 2, 1, 0, 0, 1, 2, 2, 0, 0, 2, 3, 3, 2, 0, 0, 4, 3, 0, 0, 3, 1, 2, 1, 0, 1, 4, 1, 2, 0, 1, 3, 1, 2, 0, 4, 4, 3, 1, 0, 0, 1, 4, 1, 0, 1, 3, 2, 1, 0, 2, 0, 4, 4, 0, 0, 0, 4, 3, 0, 4, 2, 3, 3, 0, 1, 1, 2, 0, 0
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..81839
Crossrefs
Programs
-
Mathematica
A379115[n_] := If[n <= 1, 0, Mod[n*Total[MapApply[#2*Fibonacci[#]/# &, FactorInteger[n]]], 5]]; Array[A379115, 100, 0] (* Paolo Xausa, Dec 16 2024 *)
-
PARI
A379115(n) = if(n<=1, 0, my(f=factor(n)); (n*sum(i=1, #f~, f[i, 2]*fibonacci(f[i,1])/f[i, 1]))%5);