cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379126 a(1) = 1; for n > 1, a(n) is the least number k such that A325567(k) = n, or 0 if no such number exists.

Original entry on oeis.org

1, 4, 9, 8, 35, 18, 49, 16, 135, 70, 33, 36, 65, 98, 225, 32, 527, 270, 133, 140, 651, 66, 161, 72, 775, 130, 837, 196, 899, 450, 961, 64, 2079, 1054, 525, 540, 259, 266, 273, 280, 2583, 1302, 129, 132, 2835, 322, 705, 144, 3087, 1550, 3213, 260, 3339, 1674, 385, 392, 1539, 1798, 3717, 900, 3843, 1922, 3969, 128
Offset: 1

Views

Author

Antti Karttunen, Dec 21 2024

Keywords

Comments

By definition, sequence is injective (apart from possible 0's) and each a(n) is a multiple of n.

Crossrefs

Cf. A048720, A065621, A277320, A325567, A379128 (odd bisection), A379228 [= a(n)/n].
Cf. also A115872, A266195, A266351.

Programs

  • PARI
    A048720(b, c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1, n+n-1);
    memoA325567 = Map();
    A325567(n) = if(1==n,1,my(v); if(mapisdefined(memoA325567,n,&v), v, fordiv(n, d, if((d>1)&&A048720(A065621(n/d), d)==n, v = (n/d); break)); mapput(memoA325567,n,v); (v)));
    A379126(n) = for(k=1,oo,if(A325567(k)==n, return(k)));

Formula

a(n) = n * A379228(n).

A379127 a(1) = 1; for n > 1, a(n) is the largest proper divisor d of 2n-1 such that A048720(A065621(d),(2n-1)/d) is equal to 2n-1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 11, 5, 1, 1, 1, 1, 3, 1, 7, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 43, 1, 19, 9, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 23, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 21 2024

Keywords

Comments

The position of the first occurrence of odd numbers k = 1, 3, 5, 7, 9, ... in this sequence is given by (1/2) * (A379128(2*k-1)+1).

Crossrefs

Odd bisection of A325567.

Programs

Formula

a(n) = A325567(2*n-1).
Showing 1-2 of 2 results.