A379129 a(n) is the number of unitary proper divisors d > 1 of n for which A048720(A065621(sigma(d)),sigma(n/d)) is equal to sigma(n).
0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 2, 2, 0, 1, 0, 1, 0, 1, 0, 5, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 1, 2, 0, 0, 2, 1, 1, 1, 0, 3, 0, 1, 1, 0, 1, 5, 0, 0, 1, 5, 0, 1, 0, 0, 1, 1, 1, 3, 0, 1, 0, 0, 0, 3, 0, 1, 1, 1, 0, 0, 1, 1, 2, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 3
Offset: 1
Keywords
Examples
For n = 21 = 3*7, both A048720(A065621(sigma(3)),sigma(7)) [= A048720(4,8)] and A048720(A065621(sigma(7)),sigma(3)) [= A048720(8,4)] yield the decided result, which is 32 = sigma(21), therefore a(21) = 2. For n = 34 = 2*17, neither A048720(A065621(sigma(2)),sigma(17)) = A048720(7,18) = 126 nor A048720(A065621(sigma(17)),sigma(2)) = A048720(50,3) = 86 is the decided result, 54 = sigma(34), therefore a(34) = 0. See example in A379121 why a(383942431613601) = 2.