cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379129 a(n) is the number of unitary proper divisors d > 1 of n for which A048720(A065621(sigma(d)),sigma(n/d)) is equal to sigma(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 2, 2, 0, 1, 0, 1, 0, 1, 0, 5, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 1, 2, 0, 0, 2, 1, 1, 1, 0, 3, 0, 1, 1, 0, 1, 5, 0, 0, 1, 5, 0, 1, 0, 0, 1, 1, 1, 3, 0, 1, 0, 0, 0, 3, 0, 1, 1, 1, 0, 0, 1, 1, 2, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2024

Keywords

Examples

			For n = 21 = 3*7, both A048720(A065621(sigma(3)),sigma(7)) [= A048720(4,8)] and A048720(A065621(sigma(7)),sigma(3)) [= A048720(8,4)] yield the decided result, which is 32 = sigma(21), therefore a(21) = 2.
For n = 34 = 2*17, neither A048720(A065621(sigma(2)),sigma(17)) = A048720(7,18) = 126 nor A048720(A065621(sigma(17)),sigma(2)) = A048720(50,3) = 86 is the decided result, 54 = sigma(34), therefore a(34) = 0.
See example in A379121 why a(383942431613601) = 2.
		

Crossrefs

Cf. A000203, A048720, A065621, A277320, A379113, A379114 (positions of terms > 0), A379118, A379130.

Programs

  • PARI
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    A379129(n) = { my(s=sigma(n)); sumdiv(n,d,if(1==d || d==n || 1!=gcd(d,n/d), 0, A048720(A065621(sigma(n/d)),sigma(d))==s)); };

Formula

a(n) = Sum_{d|n, gcd(d, n/d)=1, 1A048720(A065621(sigma(d)),sigma(n/d)) == sigma(n)], where [ ] is the Iverson bracket.
a(n) <= A379130(n).