cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379130 a(n) is the number of unitary divisors d of n for which A048720(A065621(sigma(d)),sigma(n/d)) is equal to sigma(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 4, 3, 1, 2, 1, 2, 1, 2, 1, 6, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 2, 3, 1, 1, 3, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 6, 1, 1, 2, 6, 1, 2, 1, 1, 2, 2, 2, 4, 1, 2, 1, 1, 1, 4, 1, 2, 2, 2, 1, 1, 2, 2, 4, 3, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2024

Keywords

Comments

It seems that A046528 gives all numbers k for which a(k) = A034444(k).

Examples

			For every n, a(n) >= 1, because A048720(A065621(sigma(1)), sigma(n)) = A048720(A065621(1), sigma(n)) = A048720(1, sigma(n)) = sigma(n).
For n = 21 = 3*7, after the divisor pair [1,21], all other divisor pairs also satisfy the condition: A048720(A065621(sigma(3)),sigma(7)) [= A048720(4,8)] and A048720(A065621(sigma(7)),sigma(3)) [= A048720(8,4)] and A048720(A065621(sigma(21)),sigma(1)) [= A048720(32,1)] all yield the decided result, 32 = sigma(21), therefore a(21) = 4.
See also examples in A379129.
		

Crossrefs

Programs

  • PARI
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    A379130(n) = { my(s=sigma(n)); sumdiv(n,d,if(1!=gcd(d,n/d), 0, A048720(A065621(sigma(n/d)),sigma(d))==s)); };

Formula

a(n) = Sum_{d|n, gcd(d,n/d)=1} [A048720(A065621(sigma(d)),sigma(n/d)) == sigma(n)], where [ ] is the Iverson bracket.
A379129(n) <= a(n) <= A034444(n).