A379130 a(n) is the number of unitary divisors d of n for which A048720(A065621(sigma(d)),sigma(n/d)) is equal to sigma(n).
1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 4, 3, 1, 2, 1, 2, 1, 2, 1, 6, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 2, 3, 1, 1, 3, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 6, 1, 1, 2, 6, 1, 2, 1, 1, 2, 2, 2, 4, 1, 2, 1, 1, 1, 4, 1, 2, 2, 2, 1, 1, 2, 2, 4, 3, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 4
Offset: 1
Keywords
Examples
For every n, a(n) >= 1, because A048720(A065621(sigma(1)), sigma(n)) = A048720(A065621(1), sigma(n)) = A048720(1, sigma(n)) = sigma(n). For n = 21 = 3*7, after the divisor pair [1,21], all other divisor pairs also satisfy the condition: A048720(A065621(sigma(3)),sigma(7)) [= A048720(4,8)] and A048720(A065621(sigma(7)),sigma(3)) [= A048720(8,4)] and A048720(A065621(sigma(21)),sigma(1)) [= A048720(32,1)] all yield the decided result, 32 = sigma(21), therefore a(21) = 4. See also examples in A379129.
Comments