A379134 Decimal expansion of the inradius of a pentakis dodecahedron with unit shorter edge length.
1, 4, 4, 5, 3, 3, 1, 9, 2, 5, 6, 5, 2, 2, 1, 4, 8, 2, 8, 3, 1, 5, 8, 5, 1, 2, 4, 9, 1, 0, 2, 0, 8, 1, 1, 9, 7, 7, 2, 3, 8, 7, 1, 1, 7, 7, 8, 4, 3, 0, 3, 8, 9, 7, 1, 6, 2, 5, 7, 9, 0, 6, 7, 3, 8, 1, 7, 3, 5, 4, 5, 5, 1, 5, 9, 4, 0, 1, 5, 6, 3, 8, 4, 2, 8, 0, 6, 3, 3, 2
Offset: 1
Examples
1.4453319256522148283158512491020811977238711778430...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Pentakis Dodecahedron.
- Wikipedia, Pentakis dodecahedron.
- Index entries for algebraic numbers, degree 4.
Crossrefs
Programs
-
Mathematica
First[RealDigits[Sqrt[477/436 + 97*Sqrt[5]/218], 10, 100]] (* or *) First[RealDigits[PolyhedronData["PentakisDodecahedron", "Inradius"], 10, 100]]
-
PARI
sqrt(477/436 + 97*sqrt(5)/218) \\ Charles R Greathouse IV, Feb 05 2025
Formula
Equals sqrt(477/436 + 97*sqrt(5)/218) = sqrt(477/436 + 97*A002163/218).
Equals the largest root of 1744*x^4 - 3816*x^2 + 361.
Comments