A379150 Smallest prime ending in "3", with n preceding "0" digits.
103, 2003, 70003, 100003, 1000003, 20000003, 500000003, 40000000003, 40000000003, 100000000003, 2000000000003, 230000000000003, 3100000000000003, 11000000000000003, 20000000000000003, 100000000000000003, 1000000000000000003, 310000000000000000003, 500000000000000000003
Offset: 1
Examples
a(1) = 103, is the smallest prime ending in "03"; a(2) = 2003, is the smallest prime ending in "003".
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..996
Programs
-
Mathematica
Table[i=1;While[!PrimeQ[m=FromDigits[Join[IntegerDigits[i],Table[0,n],{3}]]],i++];m,{n,19}] (* James C. McMahon, Dec 23 2024 *)
-
PARI
a(n)=for(i=1, oo, if(isprime(i*10^(n+1)+3), return(i*10^(n+1)+3))) \\ Johann Peters, Dec 27 2024
-
Python
import sympy def prime3_finder(): outVec = [] power = 2 for n in range(100,999999999): if not n & 3 == 3: continue # speed-up over simple MOD operation if not n % 10**power == 3: continue if not sympy.isprime(n): continue outVec.append(n) power += 1 return outVec outvec = prime3_finder() print(outvec)
-
Python
from sympy import isprime from itertools import count def a(n): return next(i for i in count(10**(n+1)+3, 10**(n+1)) if isprime(i)) print([a(n) for n in range(1, 20)]) # Michael S. Branicky, Dec 16 2024
Extensions
More terms from Michael S. Branicky, Dec 16 2024
Comments