cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379150 Smallest prime ending in "3", with n preceding "0" digits.

Original entry on oeis.org

103, 2003, 70003, 100003, 1000003, 20000003, 500000003, 40000000003, 40000000003, 100000000003, 2000000000003, 230000000000003, 3100000000000003, 11000000000000003, 20000000000000003, 100000000000000003, 1000000000000000003, 310000000000000000003, 500000000000000000003
Offset: 1

Views

Author

James S. DeArmon, Dec 16 2024

Keywords

Comments

Leading zeros are not allowed, e.g., "03".
a(997) has 1001 digits. - Michael S. Branicky, Dec 16 2024

Examples

			a(1) = 103, is the smallest prime ending in "03";
a(2) = 2003, is the smallest prime ending in "003".
		

Crossrefs

Programs

  • Mathematica
    Table[i=1;While[!PrimeQ[m=FromDigits[Join[IntegerDigits[i],Table[0,n],{3}]]],i++];m,{n,19}] (* James C. McMahon, Dec 23 2024 *)
  • PARI
    a(n)=for(i=1, oo, if(isprime(i*10^(n+1)+3), return(i*10^(n+1)+3))) \\ Johann Peters, Dec 27 2024
  • Python
    import sympy
    def prime3_finder():
      outVec = []
      power = 2
      for n in range(100,999999999):
          if not n & 3 == 3: continue # speed-up over simple MOD operation
          if not n % 10**power == 3: continue
          if not sympy.isprime(n): continue
          outVec.append(n)
          power += 1
      return outVec
    outvec = prime3_finder()
    print(outvec)
    
  • Python
    from sympy import isprime
    from itertools import count
    def a(n): return next(i for i in count(10**(n+1)+3, 10**(n+1)) if isprime(i))
    print([a(n) for n in range(1, 20)]) # Michael S. Branicky, Dec 16 2024
    

Extensions

More terms from Michael S. Branicky, Dec 16 2024