A379154 Prime numbers p such that the interval from p to the next prime number contains a unique perfect power.
3, 13, 47, 61, 79, 97, 127, 139, 167, 193, 211, 223, 241, 251, 283, 317, 337, 359, 397, 439, 479, 509, 523, 571, 619, 673, 727, 773, 839, 887, 953, 997, 1021, 1087, 1153, 1223, 1291, 1327, 1367, 1439, 1511, 1597, 1669, 1723, 1759, 1847, 1933, 2017, 2039, 2113
Offset: 1
Keywords
Examples
The prime after 13 is 17, and the interval (13,14,15,16,17) contains only one perfect power 16, so 13 is in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
The indices of these primes are one plus the positions of 1 in A377432.
For zero instead of one perfect power we have the primes indexed by A377436.
The indices of these primes are A377434.
For previous instead of next prime we have A378364.
A081676 gives the greatest perfect power <= n.
A116086 gives perfect powers with no primes between them and the next perfect power.
A377468 gives the least perfect power > n.
Programs
-
Maple
N:= 10^4: # to get all entries <= N S:={seq(seq(a^b, b = 2 .. floor(log[a](N))), a = 2 .. floor(sqrt(N)))}: S:= sort(convert(S,list)): J:= select(i -> nextprime(S[i]) < S[i+1] and prevprime(S[i]) > S[i-1], [$2..nops(S)-1]): J:= [1,op(J)]: map(prevprime, S[J]); # Robert Israel, Jan 19 2025
-
Mathematica
perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1; Select[Range[1000],PrimeQ[#]&&Length[Select[Range[#,NextPrime[#]],perpowQ]]==1&]
-
PARI
is_a379154(n) = isprime(n) && #select(x->ispower(x), [n+1..nextprime(n+1)-1])==1 \\ Hugo Pfoertner, Dec 19 2024
Comments