cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A379188 G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^3) * (1 - x*A(x))^3).

Original entry on oeis.org

1, 4, 34, 392, 5271, 77530, 1208602, 19620262, 328167191, 5616065633, 97867738285, 1730732539345, 30981439344096, 560293394484145, 10221582080782452, 187884236846039893, 3476266045318846245, 64690833375603622619, 1210026171180264742927, 22736845507710710652858
Offset: 0

Views

Author

Seiichi Manyama, Dec 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(4*n+5*k+2, n-k)/(n+3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(4*n+5*k+2,n-k)/(n+3*k+1).

A379190 G.f. A(x) satisfies A(x) = (1 + x*A(x)^3) * (1 + x*A(x))^3.

Original entry on oeis.org

1, 4, 30, 304, 3557, 45150, 604222, 8393282, 119872890, 1749183075, 25964512607, 390828464403, 5951561595889, 91523131078999, 1419293428538496, 22169968253466467, 348507676062911520, 5509187208564734328, 87522347516801353980, 1396619714730284551913, 22375420057050167868366
Offset: 0

Views

Author

Seiichi Manyama, Dec 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+2*k+1, k)*binomial(3*n+6*k+3, n-k)/(n+2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+2*k+1,k) * binomial(3*n+6*k+3,n-k)/(n+2*k+1).

A379192 G.f. A(x) satisfies A(x) = (1 + x*A(x))^3/(1 - x*A(x)^2).

Original entry on oeis.org

1, 4, 27, 235, 2344, 25374, 289906, 3441015, 42017262, 524418639, 6660297019, 85796763321, 1118314903447, 14722203914653, 195465862293738, 2614323606027841, 35191188308646852, 476390139438508209, 6481416282265645008, 88577523301166187997, 1215421503348039618483
Offset: 0

Views

Author

Seiichi Manyama, Dec 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+2*k+1, k)*binomial(3*n+3*k+3, n-k)/(n+2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+2*k+1,k) * binomial(3*n+3*k+3,n-k)/(n+2*k+1).

A379194 G.f. A(x) satisfies A(x) = (1 + x*A(x))^2/(1 - x*A(x)^3).

Original entry on oeis.org

1, 3, 19, 174, 1883, 22323, 280409, 3666736, 49386326, 680431419, 9544684113, 135852904486, 1957119390279, 28482417043498, 418119577938769, 6184065626127498, 92062362629472668, 1378427894172778961, 20744229318047760620, 313606289763390553200, 4760422971894347226659
Offset: 0

Views

Author

Seiichi Manyama, Dec 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(2*n+4*k+2, n-k)/(n+3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(2*n+4*k+2,n-k)/(n+3*k+1).
Showing 1-4 of 4 results.