cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379195 G.f. A(x) satisfies x = Sum_{n=-oo..+oo} (A(x) - A(x)^n)^(n+1).

Original entry on oeis.org

1, 1, 1, 2, 5, 10, 21, 56, 148, 359, 906, 2450, 6571, 17338, 46777, 128681, 352859, 967315, 2679764, 7474260, 20860226, 58375826, 164197258, 463322792, 1309547562, 3710517258, 10543567357, 30021808808, 85628123727, 244694423127, 700553813377, 2008780153580, 5768264675938, 16587793685429, 47766704865133
Offset: 1

Views

Author

Paul D. Hanna, Jan 14 2025

Keywords

Comments

Compare to the identity 0 = Sum_{n=-oo..+oo} (x - x^(n+1))^n.

Examples

			G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 5*x^5 + 10*x^6 + 21*x^7 + 56*x^8 + 148*x^9 + 359*x^10 + 906*x^11 + 2450*x^12 + 6571*x^13 + 17338*x^14 + ...
where x = Sum_{n=-oo..+oo} (A(x) - A(x)^n)^(n+1).
RELATED SERIES.
F(x) = Sum_{n=-oo..+oo} (x - x^n)^(n+1) = x - x^2 + x^3 - 2*x^4 + 3*x^5 - 3*x^6 + x^7 + x^8 + x^9 - 7*x^10 + 10*x^11 - 6*x^12 + x^13 + x^15 - 8*x^16 + 23*x^17 - 25*x^18 + x^19 + 17*x^20 + x^21 - 32*x^22 + 36*x^23 - 12*x^24 + x^25 + ... + A290003(n)*x^n + ...
where F(A(x)) = x.
SPECIFIC VALUES.
A(t) = 1/2 at t = 0.30725396830704316799197832656390411971168116373389...
  where t = Sum_{n=-oo..+oo} (1/2 - 1/2^n)^(n+1),
  also, t = Sum_{n=-oo..+oo} (2^(n-1) - 1)^(n+1) / 2^(n*(n+1)).
A(t) = 1/3 at t = 0.24338606674563424484910361835257533242309621632065...
  where t = Sum_{n=-oo..+oo} (1/3 - 1/3^n)^(n+1),
  also, t = Sum_{n=-oo..+oo} (3^(n-1) - 1)^(n+1) / 3^(n*(n+1)).
A(t) = 1/4 at t = 0.19758524006807690544490179709803177425355852401229...
  where t = Sum_{n=-oo..+oo} (1/4 - 1/4^n)^(n+1).
A(t) = 1/5 at t = 0.16558333624735433324843855679493132539350188690309...
  where t = Sum_{n=-oo..+oo} (1/5 - 1/5^n)^(n+1).
A(1/4) = 0.34697020435026836163926019675791627488695303305268...
  where 1/4 = Sum_{n=-oo..+oo} (A(1/4) - A(1/4)^n)^(n+1).
A(1/5) = 0.25400492231901630962271637839330240648984255624021...
A(1/6) = 0.20160813481244983396982286666489080077373441727643...
A(1/8) = 0.14327208862930858756346363646363969972815166338945...
		

Crossrefs

Cf. A290003.

Programs

  • PARI
    N=40 \\ number of terms
    {a(n) = my(R = sum(m=-N-1, N+1, (x - x^m +x^2*O(x^N))^(m+1) ), A=x);
    A = serreverse(R); polcoef(A, n)}
    for(n=1, N, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) x = Sum_{n=-oo..+oo} (A(x) - A(x)^n)^(n+1).
(2) x = Sum_{n=-oo..+oo} (-1)^n * A(x)^(n*(n-1)) / (1 - A(x)^(n+1))^(n-1).
From Paul D. Hanna, Jan 25 2025: (Start)
(3) x/A(x) = Sum_{n=-oo..+oo} (A(x) - A(x)^n)^n.
(4) x/A(x) = Sum_{n=-oo..+oo, n<>-1} (-1)^n * A(x)^(n^2) / (1 - A(x)^(n+1))^n.
(End)
a(n) ~ c * d^n / n^(3/2), where d = 3.00914051453408723176675508018... and c = 0.174541635630216521276160108... - Vaclav Kotesovec, Jan 22 2025