cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A379284 G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^2) * (1 - x*A(x)^4)).

Original entry on oeis.org

1, 2, 15, 158, 1943, 26099, 371128, 5491868, 83692617, 1304579981, 20703125143, 333366138381, 5433036837372, 89448269251685, 1485469625972490, 24854484773368344, 418581393456669989, 7090045259711970090, 120706208890692261466, 2064356606197948427512, 35449776962011108029539
Offset: 0

Views

Author

Seiichi Manyama, Dec 19 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*n+3*k+1, k)*binomial(3*n+k, n-k)/(2*n+3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(2*n+3*k+1,k) * binomial(3*n+k,n-k)/(2*n+3*k+1).

A379287 G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^2) * (1 - x*A(x)^6)).

Original entry on oeis.org

1, 2, 19, 268, 4477, 82110, 1597963, 32402460, 677152153, 14481799261, 315417278757, 6972246638416, 156017257712825, 3527275634678216, 80447862652931941, 1848737311902300600, 42766087499793329349, 995043161703028219128, 23271045049097437148389
Offset: 0

Views

Author

Seiichi Manyama, Dec 19 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*n+5*k+1, k)*binomial(3*n+3*k, n-k)/(2*n+5*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(2*n+5*k+1,k) * binomial(3*n+3*k,n-k)/(2*n+5*k+1).

A379285 G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^2) * (1 - x*A(x)^3)).

Original entry on oeis.org

1, 2, 13, 115, 1175, 13052, 153115, 1866599, 23414063, 300238945, 3917984904, 51862207151, 694670871393, 9398137507922, 128235826442635, 1762706644013297, 24386388751113511, 339295523459625535, 4744546261930628062, 66644485202547680010, 939916204595095866644
Offset: 0

Views

Author

Seiichi Manyama, Dec 19 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*n+2*k+1, k)*binomial(3*n, n-k)/(2*n+2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(2*n+2*k+1,k) * binomial(3*n,n-k)/(2*n+2*k+1).

A379286 G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^2) * (1 - x*A(x)^5)).

Original entry on oeis.org

1, 2, 17, 209, 3025, 47975, 806673, 14126236, 254880645, 4705443504, 88458542000, 1687588704861, 32589587581341, 635824437818621, 12513756861585915, 248148065577971460, 4953215882123744005, 99442753396113435246, 2006704742456528041800, 40679834776076235917841
Offset: 0

Views

Author

Seiichi Manyama, Dec 19 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*n+4*k+1, k)*binomial(3*n+2*k, n-k)/(2*n+4*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(2*n+4*k+1,k) * binomial(3*n+2*k,n-k)/(2*n+4*k+1).
Showing 1-4 of 4 results.