A379269 Numbers whose binary representation has exactly three zeros.
8, 17, 18, 20, 24, 35, 37, 38, 41, 42, 44, 49, 50, 52, 56, 71, 75, 77, 78, 83, 85, 86, 89, 90, 92, 99, 101, 102, 105, 106, 108, 113, 114, 116, 120, 143, 151, 155, 157, 158, 167, 171, 173, 174, 179, 181, 182, 185, 186, 188, 199, 203, 205, 206, 211, 213, 214, 217
Offset: 1
Links
- Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
Programs
-
Mathematica
Select[Range[2^8],Count[IntegerDigits[#,2],0]==3&] (* James C. McMahon, Dec 20 2024 *)
-
Python
from math import comb, isqrt from sympy import integer_nthroot def A056557(n): return (k:=isqrt(r:=n+1-comb((m:=integer_nthroot(6*(n+1), 3)[0])-(n
A333516(n): return (r:=n-1-comb((m:=integer_nthroot(6*n, 3)[0])+(n>comb(m+2, 3))+1, 3))-comb((k:=isqrt(m:=r+1<<1))+(m>k*(k+1)), 2)+1 def A360010(n): return (m:=integer_nthroot(6*n, 3)[0])+(n>comb(m+2, 3)) def A379269(n): a = (a2:=integer_nthroot(24*n, 4)[0])+(n>comb(a2+2, 4))+2 j = comb(a,4)-n b, c, d = A360010(j+1)+1, A056557(j)+1, A333516(j+1)-1 return (1<
Formula
a(n) = (A360573(n)-1)/2.
A023416(a(n)) = 3.
Let a = floor((24n)^(1/4))+3 if n>binomial(floor((24n)^(1/4))+2,4) and a = floor((24n)^(1/4))+2 otherwise. Let j = binomial(a,4)-n. Then a(n) = 2^a-1-2^(A360010(j+1)+1)-2^(A056557(j)+1)-2^(A333516(j+1)-1).
Sum_{n>=1} 1/a(n) = 1.3949930090659130972172214185888677947877214389482588641632435250211546702139813215203065255971026537... (calculated using Baillie's irwinSums.m, see Links). - Amiram Eldar, Dec 21 2024