cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A379270 Numbers with only digits "1" and three digits "0".

Original entry on oeis.org

1000, 10001, 10010, 10100, 11000, 100011, 100101, 100110, 101001, 101010, 101100, 110001, 110010, 110100, 111000, 1000111, 1001011, 1001101, 1001110, 1010011, 1010101, 1010110, 1011001, 1011010, 1011100, 1100011, 1100101, 1100110, 1101001, 1101010, 1101100
Offset: 1

Views

Author

Chai Wah Wu, Dec 19 2024

Keywords

Comments

Binary representation of A379269.
Numbers in A007088 with three 0 digits.

Crossrefs

Programs

  • Mathematica
    Select[Range[10^7],Count[IntegerDigits[#],0]==3&&Max[IntegerDigits[#]]==1&] (* James C. McMahon, Dec 20 2024 *)
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A056557(n): return (k:=isqrt(r:=n+1-comb((m:=integer_nthroot(6*(n+1), 3)[0])-(nA333516(n): return (r:=n-1-comb((m:=integer_nthroot(6*n, 3)[0])+(n>comb(m+2, 3))+1, 3))-comb((k:=isqrt(m:=r+1<<1))+(m>k*(k+1)), 2)+1
    def A360010(n): return (m:=integer_nthroot(6*n, 3)[0])+(n>comb(m+2, 3))
    def A379270(n):
        a = (a2:=integer_nthroot(24*n, 4)[0])+(n>comb(a2+2, 4))+2
        j = comb(a,4)-n
        b, c, d = A360010(j+1)+1, A056557(j)+1, A333516(j+1)-1
        return (10**a-1)//9-10**b-10**c-10**d

Formula

a(n) = A007088(A379269(n)).
Showing 1-1 of 1 results.