A379318 Odd numbers whose product of prime indices is a multiple of their sum of prime indices.
3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 131, 137, 139, 149, 151, 157, 163, 165, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 2: {1} 53: {16} 109: {29} 3: {2} 59: {17} 113: {30} 5: {3} 61: {18} 125: {3,3,3} 7: {4} 63: {2,2,4} 127: {31} 9: {2,2} 65: {3,6} 131: {32} 11: {5} 67: {19} 137: {33} 13: {6} 71: {20} 139: {34} 17: {7} 73: {21} 149: {35} 19: {8} 79: {22} 150: {1,2,3,3} 23: {9} 81: {2,2,2,2} 151: {36} 29: {10} 83: {23} 154: {1,4,5} 30: {1,2,3} 84: {1,1,2,4} 157: {37} 31: {11} 89: {24} 163: {38} 37: {12} 97: {25} 165: {2,3,5} 41: {13} 101: {26} 167: {39} 43: {14} 103: {27} 169: {6,6} 47: {15} 107: {28} 173: {40} 49: {4,4} 108: {1,1,2,2,2} 179: {41}
Crossrefs
For nonprime instead of odd we get A326150.
Counting and ranking multisets by comparing sum and product:
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[2,100],OddQ[#]&&Divisible[Times@@prix[#],Total[prix[#]]]&]
Comments