cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379320 Number of integer partitions of n whose product is a multiple of n + 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 2, 2, 3, 0, 14, 0, 7, 15, 53, 0, 81, 0, 110, 61, 32, 0, 562, 170, 62, 621, 560, 0, 1400, 0, 3387, 569, 199, 1515, 7734, 0, 339, 1486, 13374, 0, 11926, 0, 8033, 27164, 913, 0, 85326, 15947, 47588, 8294, 25430, 0, 174779, 39748, 169009
Offset: 0

Views

Author

Gus Wiseman, Jan 18 2025

Keywords

Comments

Also the number of integer partitions of n containing 1 whose product is a multiple of n. Without requiring a 1 we get A057568.

Examples

			The a(5) = 1 through a(11) = 14 partitions:
  (3,2)  .  (4,2,1)    (3,3,2)    (5,4)      .  (8,3)
            (2,2,2,1)  (3,3,1,1)  (5,2,2)       (4,4,3)
                                  (5,2,1,1)     (6,3,2)
                                                (6,4,1)
                                                (4,3,2,2)
                                                (4,3,3,1)
                                                (6,2,2,1)
                                                (3,2,2,2,2)
                                                (3,3,2,2,1)
                                                (4,3,2,1,1)
                                                (6,2,1,1,1)
                                                (3,2,2,2,1,1)
                                                (4,3,1,1,1,1)
                                                (3,2,2,1,1,1,1)
		

Crossrefs

For n instead of n+1 we have A057568 (strict A379733), ranks A326149.
These partitions are ranked by A380217 = A379319/2 = (even case of A326149)/2.
The case of equality is A380218, see also A028422 = A001055 - 1 (ranks A325041).
A000041 counts integer partitions, strict A000009.
A379666 counts partitions by sum and product.
A380219 counts partitions of n whose product is a proper multiple of n, ranks A380216.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- multiple: A057567, ranks A326155
- divisor: A057568, ranks A326149
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[Times@@#,n+1]&]],{n,0,30}]
  • PARI
    a(n) = my(nb=0); forpart(p=n, if (!(vecprod(Vec(p)) % (n+1)), nb++)); nb; \\ Michel Marcus, Jan 21 2025