A379320 Number of integer partitions of n whose product is a multiple of n + 1.
1, 0, 0, 0, 0, 1, 0, 2, 2, 3, 0, 14, 0, 7, 15, 53, 0, 81, 0, 110, 61, 32, 0, 562, 170, 62, 621, 560, 0, 1400, 0, 3387, 569, 199, 1515, 7734, 0, 339, 1486, 13374, 0, 11926, 0, 8033, 27164, 913, 0, 85326, 15947, 47588, 8294, 25430, 0, 174779, 39748, 169009
Offset: 0
Keywords
Examples
The a(5) = 1 through a(11) = 14 partitions: (3,2) . (4,2,1) (3,3,2) (5,4) . (8,3) (2,2,2,1) (3,3,1,1) (5,2,2) (4,4,3) (5,2,1,1) (6,3,2) (6,4,1) (4,3,2,2) (4,3,3,1) (6,2,2,1) (3,2,2,2,2) (3,3,2,2,1) (4,3,2,1,1) (6,2,1,1,1) (3,2,2,2,1,1) (4,3,1,1,1,1) (3,2,2,1,1,1,1)
Crossrefs
A379666 counts partitions by sum and product.
Counting and ranking multisets by comparing sum and product:
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Divisible[Times@@#,n+1]&]],{n,0,30}]
-
PARI
a(n) = my(nb=0); forpart(p=n, if (!(vecprod(Vec(p)) % (n+1)), nb++)); nb; \\ Michel Marcus, Jan 21 2025
Comments