cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379330 G.f. A(x) satisfies A(x) = 1/sqrt( (1 - 2*x*A(x)^2) * (1 - 2*x*A(x)) ).

Original entry on oeis.org

1, 2, 10, 66, 500, 4112, 35702, 322114, 2990450, 28382486, 274151074, 2686200302, 26634199776, 266738477892, 2694291026378, 27416542767134, 280790643343716, 2892142875601024, 29939599990333394, 311334925950172590, 3250627732373638716, 34063930480000774400, 358149513590192454578
Offset: 0

Views

Author

Seiichi Manyama, Dec 21 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2^n*sum(k=0, n, binomial(n/2+3*k/2+1/2, k)*binomial(3*n/2-k/2-1/2, n-k)/(n+3*k+1));

Formula

a(n) = 2^n * Sum_{k=0..n} binomial(n/2+3*k/2+1/2,k) * binomial(3*n/2-k/2-1/2,n-k)/(n+3*k+1).

A379331 G.f. A(x) satisfies A(x) = 1/sqrt( (1 - 2*x*A(x)^3) * (1 - 2*x*A(x)) ).

Original entry on oeis.org

1, 2, 12, 100, 976, 10432, 118216, 1395200, 16965664, 211078656, 2674095616, 34378044416, 447359023072, 5881178595328, 77992591652992, 1042089880305664, 14015275654390272, 189583355671740416, 2577607282441795840, 35205701425533550592, 482822120552883164160
Offset: 0

Views

Author

Seiichi Manyama, Dec 21 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2^n*sum(k=0, n, binomial(n/2+2*k+1/2, k)*binomial(3*n/2-1/2, n-k)/(n+4*k+1));

Formula

a(n) = 2^n * Sum_{k=0..n} binomial(n/2+2*k+1/2,k) * binomial(3*n/2-1/2,n-k)/(n+4*k+1).
Showing 1-2 of 2 results.