A379335 Number of subsets of {-n..n} whose sum of reciprocals is 1.
1, 2, 4, 8, 16, 48, 96, 192, 384, 768, 1536, 5632, 11264, 22528, 77312, 154624, 309248, 922624, 1845248, 6848512, 17096576, 34193152, 68386304, 272849152
Offset: 1
Examples
a(3) = 4 subsets: {1}, {-3, 1, 3}, {-2, 1, 2}, {-3, -2, 1, 2, 3}.
Crossrefs
Cf. A092670.
Programs
-
Python
from functools import cache from fractions import Fraction @cache def b(i, s): if i == 0: return 1 if s == 1 else 0 return b(i-1, s) + b(i-1, s+Fraction(1, (-1)**(i&1)*((i+1)>>1))) a = lambda n: b(2*n, 0) print([a(n) for n in range(1, 11)]) # Michael S. Branicky, Dec 21 2024
Formula
a(n) <= 2*a(n-1) since we count s and s union {-1/n, 1/n} for each subset s counted in a(n-1); equality holds for n prime (and other cases). - Michael S. Branicky, Dec 21 2024
Extensions
a(12)-a(24) from Michael S. Branicky, Dec 21 2024
Comments