A379352 a(n) is the smallest nonnegative integer k such the greatest prime factor of k^2 + 2 is A033203(n), the n-th prime not congruent to 5 or 7 mod 8.
0, 1, 3, 7, 6, 11, 16, 23, 20, 12, 9, 40, 17, 31, 26, 28, 51, 50, 18, 78, 34, 93, 15, 109, 38, 91, 68, 29, 127, 108, 130, 75, 141, 107, 46, 120, 143, 35, 96, 69, 21, 214, 37, 126, 94, 67, 163, 56, 190, 261, 216, 153, 239, 207, 260, 104, 43, 288, 62, 206, 77, 262, 64, 151, 346
Offset: 1
Keywords
Examples
Table showing n, A033203(n), a(n), a(n)^2 + 2: 1 2 0 2 2 3 1 3 3 11 3 11 4 17 7 51 = 17*3 5 19 6 38 = 19*2 6 41 11 123 = 41*3 7 43 16 258 = 43*3*2 8 59 23 531 = 59*3^2 9 67 20 402 = 67*3*2 10 73 12 146 = 73*2 ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
Programs
-
PARI
lista(n) = { my(L=List(),p=0); while(#L
5&&r<>7, my(k=0); while(vecmax(factor(k^2 + 2)[,1]) <> p, k++); listput(L,k) )); Vec(L) }