A379357 Numerators of the partial sums of the reciprocals of the 3rd Piltz function d_3(n) (A007425).
1, 4, 5, 11, 13, 41, 47, 122, 259, 269, 299, 152, 167, 172, 59, 4, 13, 79, 85, 43, 44, 5, 16, 161, 83, 254, 517, 29, 92, 833, 878, 6191, 6296, 6401, 6506, 26129, 27389, 27809, 28229, 5671, 5923, 5951, 6203, 6245, 6287, 6371, 6623, 33199, 33829, 34039, 34459, 34669
Offset: 1
Examples
Fractions begin with 1, 4/3, 5/3, 11/6, 13/6, 41/18, 47/18, 122/45, 259/90, 269/90, 299/90, 152/45, ...
References
- Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 12-13, Theorem 1.2.
- József Sándor, Dragoslav S. Mitrinović, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 59.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Aleksandar Ivić, On the asymptotic formulae for some functions connected with powers of the zeta-function, Matematički Vesnik, Vol. 1 (14) (29) (1977), pp. 79-90.
Programs
-
Mathematica
f[p_, e_] := (e+1)*(e+2)/2; d3[1] = 1; d3[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/d3[n], {n, 1, 100}]]]
-
PARI
d3(n) = vecprod(apply(e -> (e+1)*(e+2)/2, factor(n)[, 2])); list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / d3(k); print1(numerator(s), ", "))};