cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379358 Denominators of the partial sums of the reciprocals of the 3rd Piltz function d_3(n) (A007425).

Original entry on oeis.org

1, 3, 3, 6, 6, 18, 18, 45, 90, 90, 90, 45, 45, 45, 15, 1, 3, 18, 18, 9, 9, 1, 3, 30, 15, 45, 90, 5, 15, 135, 135, 945, 945, 945, 945, 3780, 3780, 3780, 3780, 756, 756, 756, 756, 756, 756, 756, 756, 3780, 3780, 3780, 3780, 3780, 3780, 756, 756, 3780, 3780, 3780
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 12-13, Theorem 1.2.
  • József Sándor, Dragoslav S. Mitrinović, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 59.

Crossrefs

Cf. A007425, A061201, A104529, A379357 (numerators).

Programs

  • Mathematica
    f[p_, e_] := (e+1)*(e+2)/2; d3[1] = 1; d3[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/d3[n], {n, 1, 100}]]]
  • PARI
    d3(n) = vecprod(apply(e -> (e+1)*(e+2)/2, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / d3(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A007425(k)).