cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379363 Numerators of the partial sums of the reciprocals of Pillai's arithmetical function (A018804).

Original entry on oeis.org

1, 4, 23, 199, 637, 661, 8953, 9187, 65869, 201247, 205927, 26048, 132697, 134272, 135637, 2190667, 24424937, 3513791, 131554667, 132348317, 133227437, 938941259, 947830139, 190366027, 2947643, 74101331, 223443593, 2916305159, 55809797621, 55978686341, 3437499844001
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

Examples

			Fractions begin with 1, 4/3, 23/15, 199/120, 637/360, 661/360, 8953/4680, 9187/4680, 65869/32760, 201247/98280, 205927/98280, 26048/12285, ...
		

Crossrefs

Cf. A018804, A272718, A370895, A379364 (denominators), A379365.

Programs

  • Mathematica
    f[p_, e_] := (e*(p-1)/p + 1)*p^e; pillai[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/pillai[n], {n, 1, 50}]]]
  • PARI
    pillai(n) = {my(f=factor(n)); prod(i=1, #f~, (f[i,2]*(f[i,1]-1)/f[i,1] + 1)*f[i,1]^f[i,2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / pillai(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A018804(k)).
a(n)/A379364(n) = Sum_{j=0..N} K_j/log(n)^(j-1/2) + O(1/log(n)^(N+1/2)), for any integer N >= 1, where K_j are constants, and in particular K_0 = (2/sqrt(Pi)) * Product_{p prime} (sqrt(1-1/p) * Sum_{k>=1} 1/A018804(p^k)) = 1.30088863073811791549... .