A379365 Numerators of the partial alternating sums of the reciprocals of Pillai's arithmetical function (A018804).
1, 2, 13, 89, 307, 283, 4039, 761, 5639, 16189, 17125, 10396, 54437, 52862, 54227, 847157, 9646327, 9474727, 361375699, 355820149, 27844153, 27355753, 28039513, 27731821, 366667513, 72266837, 219763471, 217455781, 4211659759, 835576403, 51882159671, 25692722941
Offset: 1
Examples
Fractions begin with 1, 2/3, 13/15, 89/120, 307/360, 283/360, 4039/4680, 761/936, 5639/6552, 16189/19656, 17125/19656, 10396/12285, ...
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.5, pp. 23-24.
Programs
-
Mathematica
f[p_, e_] := (e*(p-1)/p + 1)*p^e; pillai[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/pillai[n], {n, 1, 50}]]]
-
PARI
pillai(n) = {my(f=factor(n)); prod(i=1, #f~, (f[i,2]*(f[i,1]-1)/f[i,1] + 1)*f[i,1]^f[i,2]);} list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / pillai(k); print1(numerator(s), ", "))};
Formula
a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A018804(k)).