A379537
Frugal numbers in base 2: numbers k such that A377369(k) < A070939(k).
Original entry on oeis.org
1, 27, 32, 49, 64, 81, 121, 125, 128, 135, 147, 162, 169, 189, 192, 243, 250, 256, 289, 297, 320, 338, 343, 351, 361, 363, 375, 384, 405, 448, 486, 507, 512, 513, 529, 539, 567, 576, 578, 605, 621, 625, 637, 640, 648, 675, 686, 704, 722, 729, 750, 768, 783, 832
Offset: 1
32 is a term because 32 = 2^5 = 10_2^101_2; the total number of bits of (10_2, 101_2) = 5 < the number of bits of 32 = 100000_2 (6).
135 is a term because 135 = 3^3*5 = 11_2^11_2*101_2; the total number of bits of (11_2, 11_2, 101_2) = 7 < the number of bits of 135 = 10000111_2 (8).
A379538
Square array read by ascending antidiagonals: T(n,k) is the k-th frugal number in base n.
Original entry on oeis.org
1, 1, 27, 1, 32, 32, 1, 27, 49, 49, 1, 27, 64, 64, 64, 1, 81, 81, 81, 81, 81, 1, 64, 125, 125, 121, 98, 121, 1, 64, 81, 243, 128, 125, 121, 125, 1, 81, 81, 125, 250, 162, 128, 125, 128, 1, 125, 125, 125, 243, 256, 169, 169, 128, 135, 1, 125, 128, 128, 128, 343, 289, 243, 243, 169, 147
Offset: 2
Array begins:
n\k| 1 2 3 4 5 6 7 8 9 10 ...
---------------------------------------------------------
2 | 1, 27, 32, 49, 64, 81, 121, 125, 128, 135, ... = A379537
3 | 1, 32, 49, 64, 81, 98, 121, 125, 128, 169, ...
4 | 1, 27, 64, 81, 121, 125, 128, 169, 243, 256, ...
5 | 1, 27, 81, 125, 128, 162, 169, 243, 256, 289, ...
6 | 1, 81, 125, 243, 250, 256, 289, 343, 361, 375, ...
7 | 1, 64, 81, 125, 243, 343, 361, 375, 405, 486, ...
8 | 1, 64, 81, 125, 128, 243, 343, 512, 529, 567, ...
9 | 1, 81, 125, 128, 243, 256, 343, 625, 729, 768, ...
10 | 1, 125, 128, 243, 256, 343, 512, 625, 729, 1024, ... = A046759 (without the initial 1)
... | \______ A379539 (main diagonal)
A377478
T(2,10) = 135 because 135 = 3^3*5 = 11_2^11_2*101_2; the total number of bits of (11_2, 11_2, 101_2) = 7 < the number of bits of 135 = 10000111_2 (8); and 135 is the tenth number with this property.
-
Module[{dmax = 15, a, m}, a = Table[m = 0; Table[While[Total[IntegerLength[Select[Flatten[FactorInteger[++m]], # > 1 &], n]] >= IntegerLength[m, n]]; m, dmax-n+2], {n, dmax+1, 2, -1}]; Array[Diagonal[a, # - dmax] &, dmax]]
Showing 1-2 of 2 results.
Comments