cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379389 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a deltoidal hexecontahedron.

Original entry on oeis.org

2, 6, 8, 9, 9, 2, 5, 2, 3, 4, 2, 0, 6, 5, 7, 6, 3, 4, 0, 0, 7, 2, 8, 8, 1, 5, 1, 4, 6, 3, 1, 6, 1, 6, 8, 3, 0, 0, 3, 5, 3, 3, 0, 3, 7, 2, 4, 9, 2, 1, 1, 4, 1, 4, 3, 1, 6, 0, 1, 1, 4, 5, 0, 7, 8, 1, 7, 2, 8, 3, 1, 9, 1, 3, 5, 1, 4, 1, 4, 4, 0, 1, 8, 9, 8, 9, 6, 6, 3, 8
Offset: 1

Views

Author

Paolo Xausa, Dec 23 2024

Keywords

Comments

The deltoidal hexecontahedron is the dual polyhedron of the (small) rhombicosidodecahedron.

Examples

			2.6899252342065763400728815146316168300353303724921...
		

Crossrefs

Cf. A379385 (surface area), A379386 (volume), A379387 (inradius), A379388 (midradius).
Cf. A377995 and A377996 (dihedral angles of a (small) rhombicosidodecahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[ArcCos[-(19 + 8*Sqrt[5])/41], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["DeltoidalHexecontahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-(19 + 8*sqrt(5))/41) = arccos(-(19 + 8*A002163)/41).