A379402 Rectangular array, read by descending antidiagonals: the Type 2 runlength index array of A039701 (primes mod 3); see Comments.
1, 2, 9, 3, 11, 15, 4, 16, 18, 54, 5, 21, 23, 58, 91, 6, 32, 36, 102, 110, 205, 7, 37, 39, 129, 160, 272, 194, 8, 40, 46, 161, 167, 419, 271, 139, 10, 47, 55, 174, 238, 499, 416, 260, 86, 12, 56, 73, 245, 273, 597, 496, 359, 257, 357, 13, 67, 96, 274, 292
Offset: 1
Examples
Corner: 1 2 3 4 5 6 7 8 10 12 13 14 9 11 16 21 32 37 40 47 56 67 71 74 15 18 23 36 39 46 55 73 96 99 107 111 54 58 102 129 161 174 245 274 311 326 423 515 91 110 160 167 238 273 292 321 420 508 598 621 205 272 419 499 597 618 703 733 813 835 896 932 194 271 416 496 576 617 702 730 776 834 989 1128 139 260 359 489 699 713 771 831 988 1127 1173 1190 86 257 358 464 698 830 987 1124 1164 1185 1251 1298 357 461 697 829 942 1107 1412 1498 1717 2059 2138 2179 356 438 889 1062 1714 2046 2137 2176 2551 2820 2927 3270 291 437 882 1055 1711 2033 2550 2741 2926 3269 3699 3918 Starting with s = A039701, we have for U*(s): (row 1) = ((1,1), (2,0), (3,2), (4,2), (5,2), (6,1), (7,2), (8,1), (10,2), ...) c(1) = ((9,2), (11,1), (15,2), (16,2), (18,1), (21,1), (23,1), (32,2), ...) (row 2) = ((9,2), (11,1), (16,2), (21,1), (36,1), ...) c(2) = ((15,2), (37,1), ...) (row 3) = ((15,2), (18,1), (23,2), ...) so that UI(s) has (row 1) = (1,2,3,4,5,6,7,8,10,12,13, ...) (row 2) = (9,11,16.21,32, ...) (row 3) = (15,18,23,...)
Programs
-
Mathematica
r[seq_] := seq[[Flatten[Position[Append[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]]; (* Type 2 *) row[0] = Mod[Prime[Range[4000]], 3];(* A039701 *) row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]]; k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[ SortBy[Apply[Complement, Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]]; m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]]; p[n_] := Take[m[[n]], 12] t = Table[p[n], {n, 1, 12}] Grid[t] (* array *) w[n_, k_] := t[[n]][[k]]; Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *) (* Peter J. C. Moses, Dec 04 2024 *)
Comments