A379404 Rectangular array, by descending antidiagonals: the Type 2 runlength index array of A039702 (primes mod 4); see Comments.
1, 2, 4, 3, 6, 19, 5, 8, 24, 46, 7, 12, 47, 78, 31, 9, 22, 65, 128, 77, 14, 10, 25, 72, 135, 93, 50, 91, 11, 27, 87, 154, 134, 92, 168, 239, 13, 29, 94, 197, 153, 183, 240, 337, 232, 15, 38, 97, 247, 196, 241, 400, 540, 254, 229, 16, 44, 114, 264, 246, 435
Offset: 1
Examples
Corner: 1 2 3 5 7 9 10 11 13 15 16 17 4 6 8 12 22 25 27 29 38 44 48 59 19 24 47 65 72 87 94 97 114 121 131 136 46 78 128 135 154 197 247 264 281 287 303 319 31 77 93 134 153 196 246 263 280 338 363 378 14 50 92 183 241 435 546 574 675 691 724 744 91 168 240 400 543 571 758 834 887 1041 1240 1261 239 337 540 568 707 833 886 1002 1381 1397 1407 1501 232 254 674 824 885 987 1380 1500 1811 1883 1976 2280 229 251 669 986 1377 1481 1802 1882 1971 2271 2444 2911 626 983 1376 1480 1944 2240 2439 2910 3179 3295 3710 3939 619 982 1333 1469 1943 2239 2366 2909 3178 3294 3701 3892 Starting with s = A039702, we have for U*(s): (row 1) = ((1,2), (2,3), (3,1), (4,3), (5,3), (7,1), (9,3), (10,1), ...) c(1) = ((4,3), (6,1), (8,3), (12,1), (14,3), (19,3), (22,3), (24,1), (25,1), ...) (row 2) = ((4,3), (6,1), (8,3), (12,1), (22,3), (25,1), (27,3), (29,1) ...) c(2) = ((14,3), (19,3), (24,1), ...) (row 3) = ((19,3), (24,1), ...) so that UI(s) has (row 1) = (1,2,3,5,7,9,10,11,13, ...) (row 2) = (4,6,8,12,22,25, ...) (row 3) = (19,24,47, ...)
Programs
-
Mathematica
r[seq_] := seq[[Flatten[Position[Append[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]]; (* Type 2 *) row[0] = Mod[Prime[Range[4000]], 4];(* A039701 *) row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]]; k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[ SortBy[Apply[Complement, Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]]; m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]]; p[n_] := Take[m[[n]], 12] t = Table[p[n], {n, 1, 12}] Grid[t] (* array *) w[n_, k_] := t[[n]][[k]]; Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *) (* Peter J. C. Moses, Dec 04 2024 *)
Comments