A379484 a(n) is the highest power of 3 dividing sigma(A003961(n^2)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.
1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 3, 3, 3, 1, 1, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 3, 3, 3, 3, 3, 1, 1, 3, 3, 1, 3, 1, 3, 3, 1, 3, 1, 1, 1, 3, 1, 1, 3, 1, 3, 1, 1, 9, 1, 3, 3, 3, 3, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 3, 1, 1, 3
Offset: 1
Links
Programs
-
Mathematica
{1}~Join~Array[3^IntegerExponent[#, 3] &[ DivisorSigma[1, Apply[Times, Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]]^2]] &, 105, 2] (* Michael De Vlieger, Dec 27 2024 *)
-
PARI
A379484(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1); f[i, 2] *= 2); 3^valuation(sigma(factorback(f)),3); };