cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379484 a(n) is the highest power of 3 dividing sigma(A003961(n^2)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 3, 3, 3, 1, 1, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 3, 3, 3, 3, 3, 1, 1, 3, 3, 1, 3, 1, 3, 3, 1, 3, 1, 1, 1, 3, 1, 1, 3, 1, 3, 1, 1, 9, 1, 3, 3, 3, 3, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 3, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    {1}~Join~Array[3^IntegerExponent[#, 3] &[
      DivisorSigma[1,
        Apply[Times, Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]]^2]] &,
    105, 2] (* Michael De Vlieger, Dec 27 2024 *)
  • PARI
    A379484(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1); f[i, 2] *= 2); 3^valuation(sigma(factorback(f)),3); };

Formula

Multiplicative with a(p^e) = A038500((q^(2e+1) - 1)/(q-1)), where q = nextprime(p) = A151800(p).
a(n) = A038500(A379482(n)).
a(n) = A379473(A379481(n)).