cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379496 a(n) = A019565(1+n) - A019565(A001065(n)), where A019565 is the base-2 exp-function, and A001065 is the sum of proper divisors of n.

Original entry on oeis.org

2, 4, 3, 4, 13, 15, 5, -16, 16, 35, 33, 59, 103, 189, -3, -188, 31, -44, 53, -55, 123, 225, 75, 89, 216, 451, 315, 385, 1153, 2037, 11, -2284, -171, 23, -5, -4160, 193, 225, 69, -247, 271, -1599, 453, 819, 1339, 2499, 141, -309, 422, 312, 605, 65, 2143, 4239, 979, 1985, 2673, 5993, 5003, 2275, 15013, 29991, -165
Offset: 1

Views

Author

Antti Karttunen, Jan 05 2025

Keywords

Crossrefs

Cf. also A379498.

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A379496(n) = (A019565(1+n) - A019565(sigma(n)-n));

Formula

a(n) = A019565(1+n) - A379495(n).
For even n, a(n) = 2*A019565(n) - A379495(n).
For n of the form 4k+1, a(n) = (3/2)*A019565(n) - A379495(n).

A379495 a(n) = A019565(A001065(n)), where A019565 is the base-2 exp-function, and A001065 is the sum of proper divisors of n.

Original entry on oeis.org

1, 2, 2, 6, 2, 15, 2, 30, 5, 7, 2, 11, 2, 21, 14, 210, 2, 110, 2, 165, 42, 105, 2, 65, 15, 11, 70, 385, 2, 273, 2, 2310, 210, 55, 70, 4290, 2, 165, 22, 429, 2, 2145, 2, 91, 26, 231, 2, 595, 7, 546, 110, 1365, 2, 51, 22, 17, 330, 13, 2, 7735, 2, 39, 182, 30030, 66, 1785, 2, 3003, 462, 357, 2, 102102, 2, 91, 286, 17, 66
Offset: 1

Views

Author

Antti Karttunen, Jan 05 2025

Keywords

Crossrefs

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A379495(n) = A019565(sigma(n)-n);
Showing 1-2 of 2 results.