cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380301 Semiperimeter of the unique primitive Pythagorean triple whose inradius is the n-th odd prime and whose short leg is an even number.

Original entry on oeis.org

20, 42, 72, 156, 210, 342, 420, 600, 930, 1056, 1482, 1806, 1980, 2352, 2970, 3660, 3906, 4692, 5256, 5550, 6480, 7140, 8190, 9702, 10506, 10920, 11772, 12210, 13110, 16512, 17556, 19182, 19740, 22650, 23256, 25122, 27060, 28392, 30450, 32580, 33306, 37056, 37830, 39402
Offset: 0

Views

Author

Keywords

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.

Crossrefs

Programs

  • Mathematica
    a = Table[Prime[n], {n, 2, 54}]; Apply[Join, Map[{#^2 + 3 # + 2} &, a]]

Formula

a(n) = ( A367335(n,1) + A367335(n,2) + A367335(n,3) )/2.

A380299 Sequence of primitive Pythagorean triples beginning with the triple (3,4,5), with each subsequent triple having as its inradius the area of the previous triple, and with the long leg and the hypotenuse of each triple being consecutive natural numbers.

Original entry on oeis.org

3, 4, 5, 13, 84, 85, 1093, 597324, 597325, 652875133, 213122969644883844, 213122969644883845, 139142687152258502421051253, 9680343693975641657052402486887446135645084826435004, 9680343693975641657052402486887446135645084826435005
Offset: 1

Views

Author

Keywords

Comments

The only Pythagorean triple whose inradius is equal to r and such that its long leg and its hypotenuse are consecutive is (2r+1,2r^2+2r,2r^2+2r+1).

Examples

			Triples begin:
 3, 4, 5;
 13, 84, 85;
 1093, 597324, 597325;
 652875133, 213122969644883844, 213122969644883845;
		

References

  • El Libro de las Ternas Pitagóricas, Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz y José Miguel Blanco Casado, Preprint, 2025.

Crossrefs

Programs

  • Mathematica
    {a0,b0,c0}={3,4,5};f[n_]:=Module[{fn0=a0 b0+1,fn1=((a0 b0+1)^2-1)/2},Do[{fn0,fn1}={fn1 fn0+1,((fn1 fn0+1)^2-1)/2},{n}];fn0];t[n_]:= {f[n-1],(f[n-1]^2-1)/2,(f[n-1]^2+1)/2};ternas={a0,b0,c0};For[i=1,i<=5,i++,ternas=Join[ternas,t[i]]];ternas

Formula

For n >= 1, a(3*n+1) = a(3*n-2)*a(3*n-1)+1, a(3*n-1) = (a(3*n-2)^2-1)/2, and a(3*n) = a(3*n-1)+1. - Pontus von Brömssen, Feb 04 2025
Showing 1-2 of 2 results.