A379536 Rectangular array, read by descending antidiagonals: the Type 1 runlength index array of A378142; see Comments.
1, 6, 2, 7, 12, 3, 11, 14, 18, 4, 13, 17, 21, 25, 5, 16, 20, 24, 39, 28, 8, 19, 23, 36, 55, 40, 29, 9, 22, 35, 50, 72, 56, 41, 30, 10, 26, 49, 71, 92, 73, 61, 42, 31, 15, 27, 52, 87, 103, 93, 78, 62, 45, 32, 33, 34, 54, 102, 124, 104, 94, 79, 65, 46, 47, 166, 37, 58, 113, 135, 125, 105, 97, 84, 66, 99, 179, 618
Offset: 1
Examples
Corner: 1 6 7 11 13 16 19 22 26 27 34 37 2 12 14 17 20 23 35 49 52 54 58 60 3 18 21 24 36 50 71 87 102 113 116 119 4 25 39 55 72 92 103 124 135 157 170 187 5 28 40 56 73 93 104 125 136 160 171 188 8 29 41 61 78 94 105 128 137 161 172 193 9 30 42 62 79 97 108 129 140 162 173 194 10 31 45 65 84 98 109 130 141 163 174 197 15 32 46 66 110 131 142 164 177 198 216 231 33 47 99 147 165 178 199 248 297 310 333 417 166 179 232 285 298 311 498 549 564 581 631 750 618 830 882 1262 1342 1561 1976 3056 3767 4616 5459 6112 Starting with s = A000002, we have for U*(s): (row 1) = ((1,1), (2,1), (3,1), (4,1), (5,1), (6,0), (7,1), (8,1), (9,1), (10,1), (11,0) ...) c(1) = ((2,1), (3,1), (4,1), (5,1), (8,1), (9,1), (10,1), (12,0), (14,1), (15,1), ...) (row 2) = ((2,1), (12,2), (14,1), (17,0), (20,1), (22,0), (34,1), ...) c(2) = ((3,1), (4,1), (5,1), (8,1), (9,1), (10,1), (15,1), (18,0), ...) (row 3) = ((3,1), (18,0), (21,1), (24,0), ...) so that UI(s) has (row 1) = (1,6,7,11,13,16,19....) (row 2) = (2,12,14,17,20,23,...) (row 3) = (3,18,21,24,36,...)
Programs
-
Mathematica
r[seq_] := seq[[Flatten[Position[Prepend[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]]; z = 8000; r1 = 2^(1/4); s1 = 2^(1/2); t1 = 2^(3/4); row[0] = Table[Floor[n (r1 + t1)/s1] - Floor[n r1/s1] - Floor[n t1/s1], {n, 1, z}]; row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]]; k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[SortBy[Apply[Complement, Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]]; m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]]; zz = 12 p[n_] := Take[m[[n]], zz] t = Table[p[n], {n, 1, zz}] Grid[t] (* array *) w[n_, k_] := t[[n]][[k]]; Table[w[n - k + 1, k], {n, zz}, {k, n, 1, -1}] // Flatten (* sequence *) (* Peter J.C.Moses,Dec 04 2024 *)
Comments