cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A379554 Records in A379552.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 18, 20, 21, 24, 26, 27, 28, 30, 32, 36, 40, 42, 48, 52, 54, 56, 60, 64, 72, 78, 80, 90, 96, 100, 108, 114, 120, 126, 128, 135, 136, 144, 150, 160, 168, 170, 176, 180, 186, 192, 200, 204, 210, 224, 240, 248, 252, 264, 272, 280, 288
Offset: 1

Views

Author

Michael De Vlieger, Dec 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    r = 0; nn = 10^9;
    rad[x_] := Times @@ FactorInteger[x][[All, 1]];
    s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}],
      Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]; nn = Length[s];
    Reap[Do[k = s[[i]]; If[# > r, r = #; Sow[r]] &@
      Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k],
        _?(And[1 < GCD @@ {##},
        rad[#1] == rad[#2],
        Mod[#1, #2] != 0,
        Mod[#2, #1] != 0] & @@ # &)], {i, nn}] ][[-1, 1]]

A379553 Numbers k in A376936 that set records in A379552.

Original entry on oeis.org

216, 864, 3456, 7776, 31104, 124416, 279936, 497664, 972000, 1944000, 3888000, 7776000, 11664000, 15552000, 31104000, 34992000, 46656000, 62208000, 77760000, 97200000, 194400000, 291600000, 388800000, 777600000, 874800000, 1166400000, 1555200000, 3110400000, 3499200000
Offset: 1

Views

Author

Michael De Vlieger, Dec 25 2024

Keywords

Comments

Proper subset of A025487.

Examples

			Let b(n) = A376936(n) and define property Q pertaining to (d, k/d), d|k, to be rad(d) = rad(k/d) = rad(k) but neither d | k/d nor k/d | d. Table below shows prime power decomposition of a(n), n = 1..12, writing only exponents in the "exp." column:
   n       a(n)   exp.   b(n)  (d,a(n)/d) with property Q
  -----------------------------------------------------------------
   1       216    3.3      1   (12,18)
   2       864    5.3      2   (18,48), (24,36)
   3      3456    7.3      3   (18,192), (36,96), (48,72)
   4      7776    5.5      4   (24,324), (48,162), (54,144), (72,108)
   5     31104    7.5      6
   6    124416    9.5      8
   7    279936    7.7      9
   8    497664   11.5     10
   9    972000    5.5.3   12
  10   1944000    6.5.3   14
  11   3888000    7.5.3   18
  12   7776000    8.5.3   20
See expanded table in links.
		

Crossrefs

Programs

  • Mathematica
    r = 0; nn = 10^9;
    rad[x_] := Times @@ FactorInteger[x][[All, 1]];
    s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}],  Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]; nn = Length[s];
    Reap[Do[k = s[[i]]; If[# > r, r = #; Sow[k]] &@
      Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k],
        _?(And[1 < GCD @@ {##},
        rad[#1] == rad[#2],
        Mod[#1, #2] != 0,
        Mod[#2, #1] != 0] & @@ # &)], {i, nn}] ][[-1, 1]]

A376281 Number of pairs (d, k/d), d | k, d < k/d, such that gcd(d, k/d) is not in {1, d, k/d}, where k is in A379336.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 2, 1, 3, 3, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1
Offset: 1

Views

Author

Michael De Vlieger, Jan 08 2025

Keywords

Comments

Number of ways to write k = A379336(n) as a product of numbers i and j that are neither coprime nor does one number divide the other. Both i and j are necessarily composite.
Both i and j = k/i appear in row k of A133995.

Examples

			Let s(n) = A379336(n).
a(1) = 1 since s(1) = 24 = 4*6.
a(2) = 1 since s(2) = 40 = 4*10.
a(3) = 1 since s(3) = 48 = 6*8.
a(12) = 2 since s(12) = 96 = 6*16 = 8*12.
a(16) = 3 since s(16) = 120 = 4*30 = 6*20 = 10*12.
a(44) = 4 since s(44) = 240 = 6*40 = 8*30 = 10*24 = 12*20.
a(75) = 5 since s(75) = 360 = 4*90 = 10*36 = 12*30 = 15*24 = 18*20.
a(105) = 6 since s(105) = 480 = 6*80 = 8*60 = 10*48 = 12*40 = 16*30 = 20*24, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 500; mm = Floor@ Sqrt[nn]; p = 2; q = 3;
    s = Complement[
      Select[Range[nn],
        And[#2 > #1 > 1, #2 > 3] & @@ {PrimeNu[#], PrimeOmega[#]} &],
      Union[Reap[
        While[p <= mm, q = NextPrime[p];
          While[p*q <= mm, If[p != q, Sow[p*q]]; q = NextPrime[q]];
            p = NextPrime[p]] ][[-1, 1]] ]^2 ];
    Table[k = s[[n]];
      1/2*DivisorSum[k, 1 &, ! MemberQ[{1, #1, #2}, GCD[#1, #2]] & @@ {#, k/#} &],
      {n, Length[s]}]

A379592 Number of coreful divisor pairs (d, k/d), d | k, d < k/d, such that only one divisor divides the other, where k is in A320966.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 1, 4, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 4, 1, 3, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 2, 2, 1, 5, 3, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 2, 2, 3, 1, 1, 3, 1, 1, 2, 4, 1, 2, 5, 1, 1, 1, 4, 1, 1, 2, 5, 1, 1
Offset: 1

Views

Author

Michael De Vlieger, Dec 28 2024

Keywords

Comments

Number of ways to write k = A320966(n) as a product of numbers i and j, i < j, such that rad(i) = rad(j) = rad(k), and either i | j or j | i, where rad = A007947 is the squarefree kernel.
Analogous to A370329, where the reference domain is A001694 instead of A320966.

Examples

			Let s(n) = A320966(n).
a(1) = 1 since s(1) = 8 = 2*4.
a(2) = 1 since s(2) = 16 = 2*8.
a(3) = 1 since s(3) = 27 = 3*9.
a(4) = 2 since s(4) = 32 = 2*16 = 4*8.
a(10) = 3 since s(10) = 128 = 2*64 = 4*32 = 8*16.
a(23) = 4 since s(23) = 512 = 2*256 = 4*128 = 8*64 = 16*32.
a(181) = 7 since s(181) = 20736 = 6*3456 = 12*1728 = 18*1152 = 24*864 = 36*576 = 48*432 = 72*288, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 5400; rad[x_] := Times @@ FactorInteger[x][[All, 1]];
    s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}],
      Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] > 0 &];
    Table[k = s[[n]];
      Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k],
        _?(And[rad[#1] == rad[#2],
           Xor[Divisible[#2, #1],
               Divisible[#1, #2]]] & @@ # &)], {n, Length[s]}]

A376687 Numbers that set records in in A376281.

Original entry on oeis.org

24, 96, 120, 240, 360, 480, 840, 1080, 1680, 2160, 2520, 3360, 4320, 5040, 7560, 10080, 15120, 27720, 30240, 55440, 60480, 83160, 110880, 151200, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 831600, 997920, 1330560, 1441440, 1663200, 2162160, 2882880
Offset: 1

Views

Author

Michael De Vlieger, Jan 08 2025

Keywords

Comments

Proper subset of the intersection A025487 and A379336.
There are three kinds of pairs (d, k/d), d | k, such that gcd(d, k/d) does not equal 1, d, or k/d:
Type A: rad(d) does not divide k/d, and rad(k/d) does not divide d (see A379752), where rad = A007947.
Type B: the squarefree kernel of one divisor divides the other but the reverse is not true (see A379772).
Type C: rad(d) = rad(k/d), i.e., d, k/d, and k are coreful (see A379552).
Conjecture: Numbers k that set records in A376281 do not have type C divisor pairs, i.e., those that are coreful but neither divides the other. This, since type C requires k to be powerful and divisible by cubes of 2 distinct primes (i.e., in A376936). Therefore the record is achieved only through large numbers of type A and B.
Since type A divisor pairs are common for composite k in A375055, this sequence is resembles A379752.
Since d and k/d are both composite, this sequence resembles A059992.
This sequence, to a lesser extent A379752, and a greater extent A059992, contains many highly composite numbers. (See plot of S(n) = union of this sequence and A002182 below, and corresponding graphs in respective other sequences.)

Examples

			Let b(n) = A376281(n).
Table showing exponents of prime power factors of a(n) for n = 1..20.
Example: a(5) = 360 = 2^3 * 3^2 * 5, hence we write "3.2.1".
   n    a(n)  Exp.   b(a(n))
  ----------------------------------
   1     24 *   3.1        1   4*6
   2     96     5.1        2   6*16 = 8*12
   3    120 **  3.1.1      3   4*30 = 6*20 = 10*12
   4    240 *   4.1.1      4   6*40 = 8*30 = 10*24 = 12*20
   5    360 **  3.2.1      5   4*90 = 10*36 = 12*30 = 15*24 = 18*20
   6    480     5.1.1      6   6*80 = 8*60 = 10*48 = 12*40 = 16*30 = 20*24
   7    840 *   3.1.1.1    7
   8   1080     3.3.1      9
   9   1680 *   4.1.1.1   10
  10   2160     4.3.1     11
  11   2520 **  3.2.1.1   13
  12   3360     5.1.1.1   14
*  = a(n) is highly composite (in A002182),
** = a(n) is superior highly composite (in both A002182 and A002201).
		

Crossrefs

Programs

  • Mathematica
    (* Load function f at A025487 *)
    r = 0; s = Select[Union@ Flatten@ f[8][[3 ;; -1]], Not@*SquareFreeQ];
    nn = Length[s]; Print[nn]
    Reap[Monitor[
      Do[k = s[[i]];
        If[# > r, r = #; Sow[k]] &@
          Count[Transpose@{#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k],
            _?(And[1 < GCD @@ {##}, Mod[#1, #2] != 0,
               Mod[#2, #1] != 0] & @@ # &)], {i, nn}], i] ][[-1, 1]]

A379593 Numbers that set records in A379592.

Original entry on oeis.org

8, 32, 128, 512, 2048, 8192, 20736, 41472, 82944, 165888, 186624, 373248, 746496, 1492992, 2985984, 5971968, 6718464, 11943936, 23887872, 26873856, 53747712, 107495424, 214990848, 241864704, 429981696, 859963392, 967458816, 1719926784, 3439853568, 3869835264, 7464960000
Offset: 1

Views

Author

Michael De Vlieger, Dec 30 2024

Keywords

Comments

Proper subset of the intersection of A025487 and A320966.
Let k be a powerful number (in A001694) and let coreful d | k be such that k/d is also coreful, i.e., rad(d) = rad(d/k) = rad(k), where rad = A007947 is the squarefree kernel. Suppose d < d/k. Then coreful d may either divide k/d or not (indeed, if d/k < d, k/d may either divide d or not).
Then we have either d | k/d (the cardinality of such divisors is A379592(n) for k = A320966(n)) or d does not divide k/d (the cardinality of such divisors is A379552(n) for k = A376936(n)). (The case d = k/d, both certainly coreful, of course pertains to perfect squares k in A000290.)
Coreful divisors are counted by A361430 across natural numbers, and A370329 across powerful numbers A001694. Numbers that set records in A361430 (and A370329) are in A005934 (highly powerful numbers), with records in A036965.

Examples

			Let b(n) = A379592(n).
Table showing exponents of prime power factors of a(n) for n = 1..12. Example: a(7) = 20736 = 2^8*3^4, so "8.4" appears in the "exp." column.
   n      a(n)  exp. b(a(n))
  --------------------------
   1        8    3       1   2*4
   2       32    5       2   2*16 = 4*8
   3      128    7       3   2*64 = 4*32 = 8*16
   4      512    9       4   2*256 = 4*128 = 8*64 = 16*32
   5     2048   11       5   2*1024 = 4*512 = 8*256 = 16*128 = 32=64
   6     8192   13       6   2*4096 = 4*2048 = 8*1024 = 16*512 = 32*256 = 64*128
   7    20736    8.4     7
   8    41472    9.4     8
   9    82944   10.4     9
  10   165888   11.4    10
  11   186624    8.6    11
  12   373248    9.6    12
		

Crossrefs

Programs

  • Mathematica
    (* Load function f at A025487 *)
    r = 0; s = Union@ Flatten@ f[10]; nn = Length[s];
    rad[x_] := Times @@ FactorInteger[x][[All, 1]];
      Transpose@ Reap[Monitor[
        Do[k = s[[i]];
          If[# > r, r = #; Sow[k]] &@
            Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k],
              _?(And[rad[#1] == rad[#2],
                Xor[Divisible[#2, #1],
                    Divisible[#1, #2]]] & @@ # &)], {i, nn}], {i, nn}] ][[-1, 1]]

A379465 Sum of coreful divisors d | k such that gcd(d, k/d) is not in {1, d, k/d} and rad(d) = rad(k/d), where k is in A376936 and rad = A007947.

Original entry on oeis.org

30, 42, 66, 126, 70, 78, 198, 264, 90, 234, 126, 120, 462, 312, 270, 270, 306, 150, 154, 696, 798, 936, 390, 210, 210, 290, 210, 714, 210, 286, 210, 462, 744, 240, 1710, 1224, 910, 330, 420, 2262, 390, 270, 714, 870, 1050, 294, 330, 630, 630, 2232, 378, 1620, 330
Offset: 1

Views

Author

Michael De Vlieger, Jan 13 2025

Keywords

Comments

Define function f(x) to be 1/2 * card({ d | x : gcd(d, x/d) not in {1, d, x/d}, rad(d) = rad(x) }), a counting function of distinct divisor pairs (d, x/d) that are both coreful but neither divides the other.
Define function g(x) to be Sum_{ d | x : gcd(d, x/d) not in {1, d, x/d}, rad(d) = rad(x) } d.
Define h(x) to be equal to A364988(x) = Sum_{ d | x : rad(d) = rad(x) } d, sum of coreful divisors of x.
a(n) = g(A376936(n)) <= h(A376936(n)).
The function f(x) is analogous to tau(x) = A000005(x) while g(x) is analogous to sigma(x) = A000203(x).
f(k) > 0 and g(k) > 1 for k in A376936, otherwise f(k) = 0 and g(k) = 0.
Since rad(d) = rad(k/d) = rad(k), a(n) = m*rad(k), with integer m > 1.

Examples

			Let s = A376936.
a(1) = 30 since s(1) = 216 = 12*18 = 2*6 + 3*6 = 5*rad(216), and the sum of these is 30.
a(2) = 42 since s(2) = 432 = 18*24 = 3*6 + 4*6 = 7*rad(432), and the sum of these is 42.
a(3) = 66 since s(3) = 648 = 12*54 = 2*6 + 9*6 = 11*rad(648), and their sum is 66.
a(4) = 126 since s(4) = 864 = 18*48 = 24*36, and the sum of all these divisors is 126, etc. Note that 18 + 48 + 24 + 36 = 3*6 + 8*6 + 4*6 + 6*6 = 21*rad(864).
		

Crossrefs

Programs

  • Mathematica
    nn = 2^16;
    rad[x_] := Times @@ FactorInteger[x][[All, 1]];
    s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}],
      Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &];
    Map[Function[n,
      DivisorSum[n, # &,
        And[! MemberQ[{1, #1, #2}, GCD @@ {##}],
          rad[#1] == rad[#2]] & @@ {#, n/#} &]], s]
Showing 1-7 of 7 results.