A379553 Numbers k in A376936 that set records in A379552.
216, 864, 3456, 7776, 31104, 124416, 279936, 497664, 972000, 1944000, 3888000, 7776000, 11664000, 15552000, 31104000, 34992000, 46656000, 62208000, 77760000, 97200000, 194400000, 291600000, 388800000, 777600000, 874800000, 1166400000, 1555200000, 3110400000, 3499200000
Offset: 1
Keywords
Examples
Let b(n) = A376936(n) and define property Q pertaining to (d, k/d), d|k, to be rad(d) = rad(k/d) = rad(k) but neither d | k/d nor k/d | d. Table below shows prime power decomposition of a(n), n = 1..12, writing only exponents in the "exp." column: n a(n) exp. b(n) (d,a(n)/d) with property Q ----------------------------------------------------------------- 1 216 3.3 1 (12,18) 2 864 5.3 2 (18,48), (24,36) 3 3456 7.3 3 (18,192), (36,96), (48,72) 4 7776 5.5 4 (24,324), (48,162), (54,144), (72,108) 5 31104 7.5 6 6 124416 9.5 8 7 279936 7.7 9 8 497664 11.5 10 9 972000 5.5.3 12 10 1944000 6.5.3 14 11 3888000 7.5.3 18 12 7776000 8.5.3 20 See expanded table in links.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..212 (a(n) <= A002110(19).)
- Michael De Vlieger, Prime power decomposition of a(n), n = 1..212.
Programs
-
Mathematica
r = 0; nn = 10^9; rad[x_] := Times @@ FactorInteger[x][[All, 1]]; s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}], Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]; nn = Length[s]; Reap[Do[k = s[[i]]; If[# > r, r = #; Sow[k]] &@ Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k], _?(And[1 < GCD @@ {##}, rad[#1] == rad[#2], Mod[#1, #2] != 0, Mod[#2, #1] != 0] & @@ # &)], {i, nn}] ][[-1, 1]]
Comments