cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379553 Numbers k in A376936 that set records in A379552.

Original entry on oeis.org

216, 864, 3456, 7776, 31104, 124416, 279936, 497664, 972000, 1944000, 3888000, 7776000, 11664000, 15552000, 31104000, 34992000, 46656000, 62208000, 77760000, 97200000, 194400000, 291600000, 388800000, 777600000, 874800000, 1166400000, 1555200000, 3110400000, 3499200000
Offset: 1

Views

Author

Michael De Vlieger, Dec 25 2024

Keywords

Comments

Proper subset of A025487.

Examples

			Let b(n) = A376936(n) and define property Q pertaining to (d, k/d), d|k, to be rad(d) = rad(k/d) = rad(k) but neither d | k/d nor k/d | d. Table below shows prime power decomposition of a(n), n = 1..12, writing only exponents in the "exp." column:
   n       a(n)   exp.   b(n)  (d,a(n)/d) with property Q
  -----------------------------------------------------------------
   1       216    3.3      1   (12,18)
   2       864    5.3      2   (18,48), (24,36)
   3      3456    7.3      3   (18,192), (36,96), (48,72)
   4      7776    5.5      4   (24,324), (48,162), (54,144), (72,108)
   5     31104    7.5      6
   6    124416    9.5      8
   7    279936    7.7      9
   8    497664   11.5     10
   9    972000    5.5.3   12
  10   1944000    6.5.3   14
  11   3888000    7.5.3   18
  12   7776000    8.5.3   20
See expanded table in links.
		

Crossrefs

Programs

  • Mathematica
    r = 0; nn = 10^9;
    rad[x_] := Times @@ FactorInteger[x][[All, 1]];
    s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}],  Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]; nn = Length[s];
    Reap[Do[k = s[[i]]; If[# > r, r = #; Sow[k]] &@
      Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k],
        _?(And[1 < GCD @@ {##},
        rad[#1] == rad[#2],
        Mod[#1, #2] != 0,
        Mod[#2, #1] != 0] & @@ # &)], {i, nn}] ][[-1, 1]]