A379581 Numerators of the partial alternating sums of the reciprocals of the powerfree part function (A055231).
1, 1, 5, -1, 1, -2, 1, -104, 1, -19, 1, -769, -7687, -4916, -261, -1262, -20453, -57923, -1066503, -5979161, -17475593, -8958244, -201189767, -79457304, -42275159, -87410483, -13046193, -23669663, -612055937, -1025912126, -28568429291, -128848674356, -125809879051
Offset: 1
Examples
Fractions begin with 1, 1/2, 5/6, -1/6, 1/30, -2/15, 1/105, -104/105, 1/105, -19/210, 1/2310, -769/2310, ...
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.11, pp. 31-32.
Programs
-
Mathematica
f[p_, e_] := If[e==1, p, 1]; powfree[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/powfree[n], {n, 1, 50}]]]
-
PARI
powfree(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] == 1, f[i, 1], 1)); } list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / powfree(k); print1(numerator(s), ", "))};
Formula
a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A055231(k)).