A379585 Numerators of the partial alternating sums of the reciprocals of the powerful part function (A057521).
1, 0, 1, 3, 7, 3, 7, 13, 125, 53, 125, 107, 179, 107, 179, 349, 493, 53, 69, 65, 81, 65, 81, 79, 1991, 1591, 43357, 40657, 51457, 40657, 51457, 102239, 123839, 102239, 123839, 123239, 144839, 123239, 144839, 142139, 163739, 142139, 163739, 158339, 160739, 139139
Offset: 1
Examples
Fractions begin with 1, 0, 1, 3/4, 7/4, 3/4, 7/4, 13/8, 125/72, 53/72, 125/72, 107/72, ...
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.12, p. 33.
Programs
-
Mathematica
f[p_, e_] := If[e > 1, p^e, 1]; powful[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/powful[n], {n, 1, 50}]]]
-
PARI
powerful(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); } list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / powerful(k); print1(numerator(s), ", "))};
Formula
a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A057521(k)).